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ABSTRACT

Existing techniques of quality control of radar reflectivity data rely on local

texture and vertical profiles to discriminate between precipitating echoes and

non-precipitating echoes. Non-precipitating echoes may be due to artifacts such

as anamalous propagation, ground clutter, electronic interference, sun strobe,

and biological contaminants (i.e., birds, bats and insects). The local texture of

reflectivity fields suffices to remove most artifacts, except for biological echoes.

Biological echoes, also called ”bloom” echoes because of their circular shape and

expanding size during the night time, have proven difficult to remove, especially

in peak migration seasons of various biological species, because they can have

local and vertical characteristics similar to that of stratiform rain or snow.

In this paper, we describe a technique that identifies candidate bloom echoes

based on the range-variance of reflectivity in areas of bloom, and uses the global,

rather than local, characteristic of the echo to discriminate between bloom and

rain. Every range gate is assigned a probability that it corresponds to bloom using

morphological (shape-based) operations and a neural network is trained using this

probability as one of the input features. We demonstrate that this technique is

capable of identifying and removing echoes due to biological targets and other

types of artifacts while retaining echoes that correspond to precipitation.
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1. Introduction

Weather radar data are used operationally to warn of impending severe weather (Kitzmiller

et al. 1995) and to create high-resolution precipitation estimates (Fulton et al. 1998). Radar

data are routinely assimilated into numerical weather models and used for the prediction of

convective systems (Sun and Wilson 2003). Simmons and Sutter (2005) demonstrated that

expected fatalities due to tornadoes after Doppler radar installation in the United States

were 45% lower and expected injuries were 40% lower.

All of these uses of weather radar require that radar echoes correspond, broadly, to pre-

cipitation. By removing ground clutter contamination, rainfall from the radar data using

the National Weather Service (NWS) Weather Surveillance Radar-Doppler 1988 (WSR-88D)

can be improved (Fulton et al. 1998; Krajewski and Vignal 2001). A large number of false

positives for the Mesocyclone Detection Algorithm (Stumpf et al. 1998) are caused in re-

gions of clear-air return (McGrath et al. 2002; Mazur et al. 2004). A hierarchical motion

estimation technique segments and forecasts poorly in regions of ground clutter (Laksh-

manan et al. 2003). Hence, a completely automated algorithm that can remove regions

of non-precipitating echo, such as ground clutter, anomalous propagation, radar artifacts

and clear-air returns from the radar reflectivity field would be very useful in improving the

performance of other automated weather radar algorithms.

Steiner and Smith (2002) describe the causes, effects and characteristics of such contami-

nation in weather radar data. Kessinger et al. (2003), Lakshmanan et al. (2007a) determined

individual features, and combinations of features, that can be used to remove range gates of

radar reflectivity data that correspond to ”bad” echoes. Local neighborhoods in the vicinity
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of every range-gate in the three WSR-88D radar moments (reflectivity, velocity and spectrum

width) were examined and used for automated removal of non-precipitating echoes. Steiner

and Smith (2002) used a decision tree to classify range-gates into two categories – precipita-

tion and non-precipitation while Kessinger et al. (2003) used a fuzzy rule base using features

that included some introduced by Steiner and Smith (2002). Lakshmanan et al. (2007a) used

a neural network to classify radar range gates into precipitation or non-precipitation, and

followed the pixel-wise classification with clustering. A cluster was censored if the majority

of its pixels were determined to be non-precipitating echo.

a. Biological Echoes

The methods of Steiner and Smith (2002) and Kessinger et al. (2003) worked well for

anamalous propagation (AP) because AP echoes are characterized by high reflectivities,

high local variance (”texture”) in the reflectivity field and low velocities. When followed

with the clustering-based postprocessing of Lakshmanan et al. (2007a), the quality of the

resulting fields met the high threshold neccessary for fully automated quality control of radar

data. However, biological contaminants can not be easily removed by means of such local

texture or vertical profile features. Although the technique of Kessinger et al. (2003) includes

fuzzy rules to identify biological scatters, its performance is not robust enough to use as an

automated mask.

Biological echoes are difficult to discriminate from true precipitation because they share

several characteristics of precipitating echoes. Biological contaminants (such as birds, bats or

insects) are moving, and therefore have non-zero Doppler velocities (Gauthreaux and Belser
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1988) – the magnitude and texture of these scatters is very similar to that of widespread rain.

Biological echoes, especially during peak migration seasons of several biological species, have

similar radar reflectivity values in the horizontal dimensions as snow or rain. In the vertical

dimension also, as illustrated in Figure 1, it is difficult to distinguish between biological

artifacts and rain from local characteristics alone. Panels a-d show a case of biological

echoes from the KARX radar on May 25, 2008 at 04:04 UTC while panels e-h show a case of

winter precipitation from the KAPX radar on Jan. 17, 2009 at 19:23 UTC. Note that when

looking at just the local neighborhood of a pixel in the horizontal (for local texture features)

or in the vertical (for the vertical profile), there is little to distinguish the two cases.1 The

global view of (a) and (e) are required to discriminate between biological echoes and light

snow.

To discriminate between biological echoes and light rain/snow, it is necessary to consider

the characteristics of the entire echo, not just the vertical and horizontal neighborhood of a

single pixel. Biological echoes tend to be circularly symmetric and centered around the radar

(See Figure 2a,b). The reflectivity intensity tends to reach maximum at a certain distance

from the radar, and then drops with range from the radar. This is probably because the

migrating biological population peaks at a certain height. Another reason for the drop in

power as the distance from the radar increases could be that the biological target fills less

and less of the radar’s sampling volume. These are tendencies, and not universally valid –

storm cells may be circular, pass right over the radar and exhibit a very similar reflectivity

profile. In addition, storm echoes may be embedded in an area of biological contamination,

1The ”table readout” and cross-sections in these images were created with the help of the display software

described in Lakshmanan et al. (2007b).
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as shown in Figure 2c. Light snow passing over the radar can have some of the characteristics

of bloom, as shown in Figure 2d.

2. Method

Because biological echoes have a global profile that can be used to distinguish them

from precipitating echoes, while other artifacts need to be discriminated based on local

characteristics, we followed the strategy of adding a feature to the local texture-based neural

network that would be a probability that the pixel in question belongs to a biological echo.

To evaluate this probability, we computed several features and trained a neural network

with one input. Then, a feature field was created from this probability by assigning to a pixel

the bloom probability if it met certain morphological (value, shape and contiguity) criteria.

The block diagram of the technique is shown in Figure 3.

a. Bloom Radius

Extensive analyses of radar data as it relates to bird movements in the atmosphere

along with independent birds observations have found that birds migrating at night fre-

quently depart 30 to 45 minutes after local sunset (Gauthreaux and Belser 1988). As

birds leave their diurnal stopover sites and climb to typical altitudes (See diagrams at

http://virtual.clemson.edu/groups/birdrad/COM4A.HTM) of migration, they enter the radar

beam and appear as rapidly expanding circular (or nearly circular) patterns in a base re-

flectivity image. So do insects except that the insects fly at a lower altitude and slower
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speed (Markkula 2008). The radius of the circle impacted by the birds depends on the

maximum height where birds could fly. This maximum range is called bloom radius in the

current study.

The quality control technique tries to identify and censor bloom echoes when the surface

temperature at the radar site is at least 4C.2 Simply clustering echoes based on contiguity

will result in precipitation embedded within the bloom (such as in Figure 1c) also being

considered part of the bloom and being potentially censored. To identify echo over radar as

being bloom, the following steps are carried out:

1. Only range gates with an elevation less than 4 km above ground level are considered,

following studies carried out by Gauthreaux and Belser (1988) that indicated that this

was where biological echoes are concentrated.

2. The reflectivity factor (Z) values at constant range in the ”hybrid scan” (lowest un-

blocked reflectivity at every range-azimuth gate) are averaged.

3. The values of averaged Z as it varies in range are fitted to line segments.

4. The longest line segment (Pearson correlation coefficient of 0.9 or better) whose slope

is negative is considered to be the candidate bloom’s radius.

This process, of computing average Z at a certain range, and finding the longest negative-

slope line is illustrated in Figure 4b. Following the procedure outlined above takes into

2We found, after analysis of radar data in 2005-2008, that this was the lowest surface temperature at

which bloom could be found. Radar echoes around KAPX on Apr. 17, 2009 at 04:00 UTC illustrate the

existence of biological echoes at temperatures as low as 4C.
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account the expected drop-off in returned intensity by range of biological echoes while stop-

ping the bloom detection when high reflectivities are encountered.

b. Bloom Probability

If no ”long-enough” (at least 10 km in length) line segment was identified, then it is

assumed that no bloom is present in the radar image.

If a line segment longer than 10 km in length is identified, then the bloom radius is set

to the end-point of the line segment and several statistics are computed on the radar echoes

within the bloom radius: (a) mean reflectivity (b) variance of reflectivity (c) symmetry of

the mean of octants of the bloom (d) variance between the mean of the octants (e) fraction

of the bloom that is filled with echo and (f) bloom radius. These features are used as inputs

to a neural network that was trained to output the probability that the echo in question

corresponds to bloom.

The training of the neural network was carried out on a dataset consisting of 34 examples

of good data around the radar and 54 examples of biological artifacts. This dataset was

divided 60:40 into a training and a validation dataset. The good data points (which are

scarce because we needed to find examples of storms with the appropriate reflectivity values

directly over the radar) were repeated based on random selection so that the two classes had

equal apriori probability in both the training and the validation datasets. The architecture

of the neural network – 1 hidden layer consisting of a single node – was set arbitrarily and

the validation dataset was used to carry out early stopping based on cross-entropy Bishop

(1995). To ensure that the output of the neural network is a probability, the transfer function
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at the output node as chosen to be a sigmoid and the error measure to be minimized was

chosen to be the cross-entropy.

c. Identifying Bloom Pixels

The output of the neural network is the probability that within the bloom radius, biologi-

cal echoes are present. While a candidate radius has been identified and a bloom probability

has been calculated, not all pixels within that radius will correspond to bloom and not all

echoes beyond this radius will be non-biological. This is because the bloom radius was es-

timated from the variation in the average Z across all azimuths at a certain range. There

could be storm echoes embedded inside the biological echo (see Figure 5a). It is also possible

that the bloom may be non-symmetric, extending beyond the bloom radius in one direction

while the decrease of Z with range may have been stopped by the occurence of a large-enough

storm in another, as in Figure 5c.

Because of non-symmetry and embedded storm echoes, the extent of bloom echoes varies

from radial to radial. The extent of bloom is assumed to be the nearest distance at which

a storm echo is seen or when reflectivity values fall below a threshold. To ensure that these

checks are tolerant of noise, a local 3km neighborhood in the radial direction around every

range gate is examined. To ensure that storm echoes at all tilts are taken into consideration,

the reflectivity composite is used.

The algorithm assumes that a storm echo has been seen if all the gates in the 3km

neighborhood contain values above 35 dBZ. Then, all pixels connected to this 35 dBZ pixel

that have values above 25 dBZ are also marked as corresponding to storm echoes. The
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algorithm assumes that the bloom echo has been seen completely when all the gates in the

3km neighborhood contain values below 10dBZ. The extent of the bloom is the nearest

distance at which either of these conditions – a storm echo or below-threshold – happens.

All pixels in this radial until that range are given the probability of bloom that was output

from the neural network. All pixels beyond that range are assigned a bloom probability of

zero.

Because the morphological (shape-based) operations to extract embedded storm echoes

are launched only if a 35 dBZ value is seen, weaker precipitation echoes embedded in bloom

will either be identified all as bloom (leading to loss of precipitating echo) or identified all

as precipitating, leading to precipitation estimates where there is no precipitation.

d. Second-stage neural network

The bloom probability result from the first neural network is assigned to every pixel in

the image using morphological operations, thus creating a local feature field. This feature is

provided as one of the inputs to a second, local-feature-based neural network. The second

neural network had 21 of the inputs chosen via feature selection as described in Lakshmanan

et al. (2007a) and a 22nd determined by following image morphological operations on the

result of the first-stage neural network. Thus, this second network had, as input features,:

(1) Doppler velocity (2) mean of Doppler velocity (3) Standard deviation of Doppler ve-

locity (4) Minimum standard deviation of Doppler velocity in neighborhood (5) Spectrum

width (6) Reflectivity at lowest tilt (7) Neighborhood mean of reflectivity (8) Standard de-

viation of reflectivity (9) Minimum standard deviation of reflectivity in neighborhood (10)
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SPIN (Steiner and Smith 2002) (11) Inflections (Kessinger et al. 2003) (12) Reflectivity at

second tilt (13) Mean reflectivity at second tilt (14) Difference between reflectivity value and

mean (15) Minimum standard deviation (16) Maximum value in the vertical (17) Vertically

Integrated Liquid (VIL: Greene and Clark (1972)) (18) Difference between the two lowest

tilts (19) Echo Top of 0 dBZ (20) Echo Top of 20 dBZ (21) Height of maximum (22) Fraction

of neighborhood filled and (22) Probability that this pixel is part of a biological echo.

e. Clustering

The second-stage neural network was trained as in Lakshmanan et al. (2007a), and fol-

lowed by the same cluster-based postprocessing followed in that paper. The only change

is that the clustering is now on two attributes – the reflectivity maximum and the bloom

probability – so that pixels have to be connected in both the reflectivity field and the bloom

probability field to be considered a cluster. The output of the second-stage neural network

is averaged within these clusters and if the cluster average probability of being precipitating

echo is less than 0.5, the entire cluster is censored.

As was explained in Lakshmanan et al. (2007a), using a cluster of pixels in this manner

greatly increases the expected accuracy of this neural network, since the neural network

would have to be wrong on more than half the pixels of a cluster in order to wrongly

classify a cluster. So, even an average classifier will have extraordinary performance once

its results are subject to a statistical averaging operation. The output of the cluster-based

postprocessing formed the final mask used to censor the reflectivity field.
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3. Results and Conclusions

The training of the first-stage neural network (to perform the discrimination between

biological echoes and storm echoes within a computed bloom radius) was carried out on a

dataset of 88 cases split 60:40 into a training and validation dataset. Skill scores (Critical

Success Index (Donaldson et al. 1975), Heidke Skill Score (Heidke 1926), Probability of

Detection and Rate of False Alarm (Wilks 1995)) of the trained network on the validation set

are shown in Figure 6a. In this context, the probability of detection refers to the probability

of retaining precipitation and false alarms refers to non-precipitating echoes that have not

been censored while misses are precipitating echoes that have been wrongly censored.

The probabilities from the first neural network formed the 22nd input to the second-stage

neural network which operated on a pixel-by-pixel basis. This neural network was trained

with much more data – nearly 1.5 million training patterns without velocity and more than

5 million patterns with velocity data (each pattern corresponds to a non-trivial pixel in the

radar data that needs to be classified: see Lakshmanan et al. (2007a) for details). Skill scores

of the trained second-stage network on the validation set is shown in Figure 6b,c.

a. Real-time performance

The technique described in this paper has been implemented and is being run in real-time

to censor biological echoes in radar data. Some examples of the technique’s performance on

independent cases are shown in Figure 7. The top row of Figure 7 shows extensive bloom

echoes over Texas on March 26, 2009 at 04:30Z. These bloom echoes were all removed by

the QC algorithm, even the deep, non-symmetric bloom around KDFX. The middle row
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of Figure 7 shows some bloom and some light rain over the Southern Plains on March 27,

2009 at 06:00Z. All the bloom echoes were removed by the QC algorithm while all the

precipitation, even the light precipitation such as over KLBB were retained. The bottom

row of Figure 7 shows some snow echoes over New Mexico and Colorado and bloom echoes

elsewhere on March 27, 2009 at 06:00Z. All the bloom echoes were censored by the algorithm

(even the relatively deep bloom around KFWS) and all the snow echoes were retained.

b. Discussion

This paper has concentrated on biological targets centered on the radar because that’s

the category that the local texture or vertical profile-based methods of quality control (such

as those of Steiner and Smith (2002); Kessinger et al. (2003); Lakshmanan et al. (2007a))

fail to handle properly. If the biological echoes are some distance away from the radar, they

typically have weak reflectivities and do not affect higher elevation scans. Therefore, such

biological echoes can typically removed quite well by techniques that rely on local texture

and vertical profiles. As shown in Figure 8, such echoes may not be identified as bloom, but

they are censored by the second-stage neural network.

The National Weather Service has been upgrading the WSR-88D network with dual-

polarization capabilities. Dual-polarization radars provide more information about scatters

than single-polarization radars (Bringi and Chandrasekar 2001). Zrnic and Ryzhkov (1998)

showed promising results in identifying biological targets such as birds and insects with a

research dual-polarization radar in Oklahoma. However, the effectiveness of dual polariza-

tion to address blooms over different geographical regions is not fully known until the dual
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polarization upgrades are near completion for the CONUS. The technique discussed in this

paper, in combination with techniques that employ the additional moments from dual po-

larization radar (e.g: Zrnic et al. (2001)), may be useful in accurately identifying biological

scatters. While the WSR-88D will be upgraded with dual polarization in the coming 3 years

(2009-2012), gap-filling radars, TDWRs, commercial radars as well as Mexican and Cana-

dian radar networks do not have dual polarization capability and can potentially benefit

from similar techniques as presented in the paper.

c. Summary

Based on the performance of the algorithm on the validation set, and its performance

in real-time, we can conclude that a technique that identifies candidate bloom echoes based

on the range-variance of reflectivity in areas of bloom, and uses the global, rather than

local, characteristic of the echo is capable of discriminating between bloom and rain. It is

possible to compute a probability that every range gate corresponds to bloom using a neural

network trained on historical cases. This probability can be used as an additional feature to

a traditional radar QC algorithm that is based on local texture. Such a two-stage machine

intelligent algorithm is capable of identifying and removing echoes due to biological targets

and other types of artifacts while retaining echoes that correspond to precipitation.
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(a) Biological artifacts (b) Bloom reflectivity (c) Bloom velocity

(d) Bloom vertical profile (e) Snow (f) Snow reflectivity

(g) Snow Velocity (h) Snow vertical profile

Fig. 1. Biological echoes and light snow are indistinguishable based on just local texture

(b,c vs. f,g) and vertical profile (d vs. h). The ”global” view of (a) and (e) are required to

discriminate between biological echoes and light snow.
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a b c d

Fig. 2. (a,b): Examples of biological echoes: note that the characteristics of an entire

echo may help identify regions in which biological echoes are more likely. (c) One difficulty:

storms embedded in biological echo (d) Another difficulty: light snow moving over the radar.

The data are from (a) KNQA on 2008/08/04 at 04:31 UTC (b) KOAX on 2008/08/05 at

03:18 UTC (c) KDMX on 2008/08/05 at 06:07 UTC and (d) KGGW on 2009/03/26 at 05:58

UTC.
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Fig. 3. Block diagram illustrating the stages of the technique described in this paper.

Finding the bloom radius is described in Section 2a; the bloom neural network is described

in Section 2b; the morphological operations to find the bloom pixels are described in Section

2c and the second-stage neural network is described in Section 2d.
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a b c

Fig. 4. (a) Reflectivity from KARX on May 25, 2008 at 04:07 UTC (b) Finding extent

of bloom using average Z at constant range (c) Reflectivity after bloom echoes have been

censored.
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a b

c d

Fig. 5. Why morphological operations are required to clean up the reflectivity field once

bloom has been identified (a) Instance of storm echoes in one direction, and bloom in the

other (data from KEAX on May 26, 2008 at 04:14 UTC) (b) The biological echoes have been

censored by the technique of this paper while the storm echoes are retained (c) Instance of

highly non-symmetric bloom with storms embedded in bloom (data from KBRO on May 20,

2008 at 04:14 UTC) (d) Most of the biological echoes have been removed, and all the storm

echoes have been retained.
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Fig. 6. Measures of skill of the three neural networks (NNs) that comprise the complete

automated algorithm on their respective validation sets as the threshold on the output of

the NN is varied. The censoring is done cluster-by-cluster with a cluster being censored if

the mean second-stage NN output on the cluster’s pixels is less than 0.5.
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Fig. 7. Performance of algorithm in real-time on March 26 and 27, 2009. The circled areas

of bloom in the reflectivity composite field (left images) have been correctly removed (right

images) by the algorithm described in this paper while areas of snow (marked by a rectangle)

have been correctly retained.
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Fig. 8. Biological echoes that are not centered around the radar do not need special handling.

(a) Reflectivity composite from KMOB at 11:39 UTC on July 20, 2005 shows birds leaving

from an overnight roost. The circular patterns here are not centered on the radar. (b) QCed

field: even though they were not identified as bloom, the biological echoes have been removed

because they have weak reflectivities and do not show vertical continuity.
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