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Abstract

We describe a recently developed hierarchical K-Means clustering method for weather
images. that can be employed to identify storms at different scales. We describe an
error-minimization technique to identify movement between successive frames of a
sequence and show that we can use the K-Means clusters as the minimization kernel.
A Kalman filter is used to provide smooth estimates of velocity at a pixel through time.
Using this technique in combination with the K-Means clusters, we can identify storm
motion at different scales and choose different scales to forecast based on the time scale
of interest.

The motion estimator has been applied both to reflectivity data obtained from the
National Weather Service Radar (WSR-88D) and to cloud-top infrared temperatures
obtained from GOES satellites. We demonstrate results on both these sensors.

1. Introduction

The segmentation of weather imagery is a fundamental problem to automated weather
analysis, as has been pointed out in Peak and Tag (1994); Lakshmanan et al. (2000);
Johnson et al. (1998). There are numerous pattern recognition algorithms that have
been developed on weather images, such as for rainfall estimates (Lai et al. 2000), and
cloud classification (Lee et al. 1990), but segmentation techniques for weather images
have not been addressed. This is true even of work that attempts to factor out weather-
related effects in satellite imagery of land (Markus and Cavalieri 2000; Narasimhan
and Nayar 2000).

In the meteorological community, the importance of multiscale segmentation has
been often noted (Johnson et al. 1998; Wolfson et al. 1999; Lakshmanan et al. 2000).
In (Peak and Tag 1994), the authors detail the difficulties that traditional segmentation
algorithms have with satellite weather images because of the textural nature of clouds.
As a result, a complex technique consisting of a sequence of fixed thresholds, followed
by a neural network that decides how and when to prune or merge the resulting regions
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is proposed (Peak and Tag 1994). We show here that using a hierarchical technique
in combination with a texture segmentation algorithm makes segmentation of satellite
weather images possible such that even small cloud features can be identified.

The textural nature of weather imagery makes robust segmentation for storm track-
ing purposes very difficult. For storm tracking to be useful, the identification and track-
ing algorithm should be completely automated. The identification algorithm should not
require training, i.e. the algorithm should not expect to see examples of all the “objects”
it must identify. Storm “cells” (small scale features) should be capable of being identi-
fied. Because the notion of scale is natural in the storm tracking context, we would like
to add the requirement that storms at various scales be identified, with their hierarchical
structure intact. A multiscale tracking algorithm would be a significant improvement
over current tracking schemes which concentrate either on small scales(e.g: (Johnson
et al. 1998)) or on large scales (e.g: (Wolfson et al. 1999)).

In the United States, the operational way to identify storms from radar images
involves the use of multiple thresholds and counting runs of values above a threshold
along a radial. The centroids are then used as a proxy for the storms (Johnson et al.
1998) and tracked either on the basis of proximity to expected position or through a
linear programming approach (Dixon 1994). The change in position is extrapolated.

Identification and tracking algorithms for satellite weather imagery have been im-
plemented for mesoscale convective systems (Morel et al. 1997) — where the features
of interest (storm anvils colder than 240K) are on the scale of about 18;2800ur
goal, however, is to identify storm scale features, features on the scale of atiout 10

Another technique (French et al. 1992) is to use neural networks to model input
reflectivity fields as a set of nodes and to forecast reflectivity locations in the future
based on the evolution of the nodes required to model successive frames. The problems
with this technique are that it requires training a neural neural network in real-time,
and that a trained neural network can not be used to forecast fields which have not been
tracked.

A third technique is to use rectangular sub-grids and to find the maximum corre-
lation within a search radius (Rinehart and Garvey 1978; Tuttle and Gall 1999). A
modification of this technique is to pre-filter the data so as to track only the larger
scales (Wolfson et al. 1999; Lakshmanan 2000). It is also possible to use sub-grids
ranging in size from that of the entire image to small (say, 16km x 16km) grids, and to
compute motion estimates at each of these scales. Smoothness criteria can be used to
constrain these estimates at different scales.

Identifying, matching and extrapolating storm core locations is suitable for small
scale storms. The large scale features and cross-correlation technique is suitable for
longer forecasts, but with loss of detailed motion estimates. An assumption here is
that the storms are of the scale of the sub-grid, not larger. The multiscale estimation is
suitable also for large scale forecasts, but with less precise detailed motion estimates.

When used for advection, all the correlation techniques rely on reverse projection,
so there needs to be wind speed at the spot where the storm is moving to. Methods rely
on correlation estimates of rectangular templates also assume that all pixels within that
rectangular template are moving together.

We use a hybrid approach where motion estimates are made for groups of storms
(rather than for sub-grids of the image), but at various scales. The motion estimate



for a storm cell is the movement that minimizes the mean-absolute-error between the
current frame and corresponding pixels in the previous frame, except that the template
is not a rectangular sub-grid of the image, but is instead the actual shape of the storm
cell.

Instead of simply matching storm cells across frames, motion estimates are made
by finding the best match for the storm-template. Thus, the major steps in the technique
are:

1. Find storms at different scales.
2. Estimate motion at the various scales.
3. Forecast for different periods using motion at different scales.

Because the motion estimates are made for storms, it is possible to interpolate be-
tween storm boundaries to obtain motion estimates at every part of the domain.

2. Hierarchical texture segmentation to identify storms

A K-Means clustering technique from Lakshmanan (2001); Lakshmanan et al. (2002) is
used to identify components in vector fields. The technique provides nested partitions,
i.e. the identified storms structures are strictly hierarchical. The technique works by
clustering image values (reflectivity/infrared temperature, etc.) in the neighborhood of
a pixel on two opposing criteria:

e Belong to same cluster as your neighbors.
e Belong to cluster whose mean is closest to your value.

Hierarchical segmentation is incorporated into the K-Means clustering technique by
steadily relaxing inter-cluster distances.
The technique works by iteratively moving pixels between clusters minimizing

BE(k) = M (k) + (1 — N)do(k) 0<A<1 @)

where the distance in the measurement space is:

i (k) =[| pig = Ty | )
and the discontiguity measure is::
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A region growing algorithm is employed to build a set of connected regions, where
each region consists of 8-connected pixels that belong to the same K-Means cluster. If
a connected region is too small, then its cluster mean (the mean of the texture vectors
at each pixel in the region) is compared to the cluster means of the adjoining regions
and the small region is merged with the closest mean. The result of the K-Means



segmentation, region growing and region merge steps is the most detailed segmentation
of the image.

The inter-cluster distances of all adjacent clusters (or regions) in the image are
computed. A threshold is set such that half the pairs fall below this threshold. If a pair
of clusters differs by less than this threshold, the clusters are merged and cluster means
updated. This process is continued until no two adjacent regions are closer in cluster
space than the threshold. When this process is complete, we have the next coarser scale
of the segmentation. This process is repeated until no changes happen.

a. Weather Radar Images

Texture segmentation using Markov Random Field (MRF) models has been utilized
to segment synthetic aperture radar (SAR) images, mainly because SAR images are
characterized by a lot of speckle (Dong et al. 2001; Schroder et al. 1998; Smits and
Dellepine 1999), a problem which is resolved through the use of neighborhood statis-
tics. Another reason for using texture segmentation on SAR imagery is that the same
MRF model used for segmentation can also be used for classifying the identified seg-
ments (Dong et al. 2001).

Texture segmentation has not been applied to weather radar data before. In weather
radar data, especially in cases where there is significant precipitation, the problem of
speckle does not arise except in the immediate vicinity of the radar. Hence, traditional
texture segmentation provides no significant advantage. In fact, as shown in Figure le,
even a scalar segmentation approach works quite well. What neither the scalar segmen-
tation approaches, for example (Johnson et al. 1998), nor standard texture segmentation
approaches (Blum and Rosenblat 1972; Hofmann et al. 1996; Ma and Manjunath 1997)
can provide is a nested partition of identified segments. The watershed segmentation
approach of Najman and Schmitt (1996) can provide a nested partition, but does not
segment weather data well (See Figure 1f). As shown in Lakshmanan et al. (2002);
Lakshmanan (2001), multiscale segmentation can be achieved by agglomerative K-
Means clustering of texture vectors and slow relaxation of the allowed inter-cluster
distance.

We wish to segment the reflectivity moment of radar elevation scans obtained from
a Doppler Weather Service Radar (WSR-88D). The data have been mapped from polar
coordinates into a Cartesian grid tangential to the earth’s surface at the radar location
where each pixel is a square area of one kilometer on each side. The pixel values,
in dBZ, range from about-7dBZ to about64dBZ, with the reflectivity values for
some pixels missing. Missing values and all reflectivity values lessGti&¥ were
thresholded to bédBZ before the segmentation process.

The radar elevations scans in this study were collected every 5-6 minutes. The
weather surveillance radars used by the National Weather Service scan through thun-
derstorms starting at a low elevation andles® for Volume Coverage Pattern (VCP)

21, and after completing a full60° azimuthal sweep, progressively increase the eleva-
tion angle until an upper limit is reachetio(5° in VCP 21). See Figure 2 (Crum and
Alberty 1993; Smith 1995). The data were remapped to a Cartesian plane and were
then segmented using the K-Means clustering technique.



Figure 1: Segmenting a radar reflectivity image. (a) A radar reflectivity image, from
Fort Worth May 5, 1995. (b) The result of segmenting the radar reflectivity image
using the Markov Random Field (MRF) approach of Blum and Rosenblat (1972). (c)
The result of segmenting the image using the method of this paper, tweaked to process
the reflectivity range of interest. The most detailed scale is shown. (d) The next higher
scale of segmentation using the method of this paper. (e) Simply separating the image
into contiguous bands dfodBZ. (f) Using the watershed approach of Najman and
Schmitt (1996).



Figure 2: Volume Coverage Pattern (VCP) 21 of the WSR-88D, a weather surveil-
lance radar used by the National Weather Service. The volume coverage is shown.
The beamwidth is 0.95 degrees and there are 9 elevation scans in this VCP. Figure
from Smith (1995).

b. Satellite Infrared Images

We demonstrate results of segmenting the infrared window chamhg) 6f GOES
satellite imager data. The images are 200x300 with each pixel represeniting a

4km. The images are projected onto a plane tangential to the surface of the earth.
The satellite data were collected over the continental United States using GOES-11 on
March 29, 1998. The pixel values were also mapped from radiance values to equivalent
black body temperature in degrees Kelvin before the segmentation. Images of the
sequence are available at eight minute intervals.

The sequence of satellite images captures a day of significant thunderstorm activity.
Several thunderstorms grow and decay during the day. The temperatures and sizes of
the cloud tops in the images show relate in a bulk sense to the magnitude and extent
of clusters of storm updrafts within the anvil clouds. Segmentation of this sequence
should be able to consistently identify the thunderstorm cloud tops in the images. Ide-
ally, when cloud tops appear to split or merge, the corresponding segmented regions
should do the same. A very important requirement is that small changes in the storm
structure should be reflected as small changes in the segmented region corresponding
to the storm.

Studies (Browning 1979; Bellon and Zawadzki 1994) have shown that a single
storm cell grows and decays in under an hour. Therefore, a storm cell can be expected
to stay for no more than seven frames of the satellite sequence. However, a line of
thunderstorms within which these cells crop up can be expected (Browning 1979) to
persist for up to six hours. Also, the cloud top (anvil) may persist after the cell on
radar decays. Therefore, the segmentation should lend itself to segmenting regions
corresponding to larger scale features while identifying small scale features that are
contained within the large scale feature but have shorter life-times.



A single infrared image was segmented using various segmentation methods in
the literature. The results are shown in Figure 3c and d. The results of segmentation
using the other approaches (Figure 3b,e and f. are poor in terms of the scale of the
resulting regions. This is not surprising because the infrared satellite weather imagery
has several characteristics that make it hard to segment: very low dynamic range (from
about 225K to 240K) for the regions of interest, poor resolution as compared to the
scale of the phenomena of interest, and high pixel value variance, even in the absence
of edges. It is instructive to compare the poor performance of these algorithms on the
satellite image (see Figure 3) with the performance of the same algorithms on radar
reflectivity images in Section a.

The poor spatial resolution of the satellite image affects our algorithm also, in the
scale of features that we can detect. Although we can detect features as small as 10
pixels in the image, this translates to about/40?, a mid-size storm cell (although
significantly more detailed than what could be obtained using earlier approaches). The
pruning threshold of 10 pixels was set in the algorithm so that any statistics collected
are somewhat reliable. One possible way to relax this threshold is by creating a pseudo-
high resolution form of the original image, thus getting less square kilometers in the
10-pixel threshold. Unfortunately, on satellite weather images, even a pseudo-high res-
olution technique (Yao 1999) introduces unacceptable smoothing (Lakshmanan 2001),
resulting in worse performance. A second possibility, one that we have not yet looked
into because of the prohibitive cost for a continuously running system, is to obtain
weather satellite data that has higher spatial resolution. A third possibility is to use the
multi-channel nature of satellite weather information to form the pixel representation
(instead of using a texture vector based on neighborhood statistics).

Instead of using only texture measurements from only the infrared channel, we used
texture measurements (mean and variance) computed on four channels corresponding
t0 3.9, 6.7, 11 and 12 microns (near infrared, water vapor, window and “dirty window”
respectively (Menzel and Purdom 1994)). Since every pixel of the segmented out-
put actually corresponds to four relatively independent measurements (rather than just
one), the minimum pruning size in the algorithm can be reduced from about 10 pixels
to about 3. The result of using multi-channel information and a lower size threshold is
shown in Figure 5 where it is compared to the segmented result if only the 11 micron
image had been used.

Notice that the result of segmenting using all four channels (Figure 5f) has smaller
regions than the result that uses only the infrared window channel. It is not clear,
however, how significant these smaller features are in the context of thunderstorms.

3. Motion Estimation

Once the storms have been identified from the images, these storms are used as a tem-
plate and the movement that minimizes the absolute-error between two frames is com-
puted. For radar images, we used consecutive (5-6 min) volume scans.

Motion estimation is done by moving a template of the identified region at the
appropriate scale around in the previous image. A matrix of mean absolute error at the
different positions is obtained as shown in Figure 6



Figure 3: Segmenting an infrared satellite weather image. (a) The infrared image being
segmented. Notice the various storms at the top of the image. The darker areas in the
bottom correspond to ground. (b) The result of segmenting the image using the Markov
Random Field (MRF) approach of Blum and Rosenblat (1972). There is no detail — it
is effectively a binary segmentation. (c) The result of segmenting the image using the
method of this paper (the most detailed scale). Notice the fine detail within the clouds.
(d) The next higher scale of segmentation using the method of this paper. The strong
storm cells being significantly colder are retained — the large cloud masses are merged.
(e) Simply separating the image into contiguous bandsfoélvin. There is a lot of

detail, but no organization. This is what you get using hierarchical thresholds. (f) Using
the watershed segmentation approach of Najman and Schmitt (1996). Because of the
textural nature of the data, the watershed algorithm has very poor performance.
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Figure 4: A close-in look at the results shown in Figure 3.. (a) The infrared image
being segmented (same as Figure 3a). (b) A close-in look at the input satellite infrared
image of (a). (c) A close-in look at the result of segmenting the image using the method
of this paper (the most detailed scale). Notice the fine detail within the clouds. (d) A
close-in look at the next higher scale of segmentation using the method of this paper.



Figure 5: Using multi-channel satellite data for segmentation. (a) 3.9 micron infrared
(b) 6.7 micron water vapor (c) 11 micron window (d) 12 micron dirty window chan-
nels of data. (e) Most detailed segmentation using only the 11 micron image (f) Most
detailed segmentation using all four channels. The segmentation is more detailed than
the segmentation that was achieved in (e), but whether these extra details are useful is
yet to be determined.

Figure 6: Matrix of mean absolute error by position. Larger errors are “warmer”. Two
different locations are shown.




Instead of simply finding the absolute minimum, a smoother minimum of the abso-
lute error field is sought. The field of absolute errors is minimized by weighting each
value by how much it differs from the absolute minimum and finding the centroid.

For each storm template, we also get a growth/decay estimate. This is based on
how much the average value inside the template changes based on the template at the
best match.

Given the motion estimates for each of the regions in the image, the motion estimate
at each pixel is determined through interpolation. At the pixglthe motion estimate
Ugy IS given by

XU Wigy
umy = ="

(4)
whereu; is the motion estimate for thé€" region and the weight of the this estimate at
the pointzy is given by:

N;
|y —ci |?

N; is the number of pixels in thé" region,¢; its centroid and| denotes the Euclidean
distance between the two points.

This motion estimate is for the pair of frames that were used in the comparison. We
do temporal smoothing of these estimates by running a Kalman filter Kalman (1960)
at each pixel of the motion estimate. The Kalman estimator is built around a con-
stant acceleration model with the standard Kalman update equations Brown and Hwang
(1997).

a. Short-term Forecast

The forecast of the fields is done based on the motion estimates, growth and decay
heuristic and the current data. Forecasts can be made on fields other than the tracked
field. For example, motion estimates can be derived from VIL and applied to radar
reflectivity and probability fields of lightning and hail.

The forecast is done by first project data forward in time to a spatial location given
by the motion estimate at their current location and the elapsed time. Locations not
filled by this forward projection are filled by interpolating using an inverse square-
distance metric of nearby filled locations.

The skill of this technique is quantititavely measured by comparing, for example,
the 30 minute forecast against the actual field closest to 30 minutes ahead. For the
mean absolute error results, the actual values are used. For the critical success index
(CSI) results, the best match with a 5x5 window is used. Comparisions are made with
a plain persistence, and with motion estimates derived by minimizing the correlation
of a 5x5 template between the frames.

Results over a 60minute period on reflectivity from the Fort Worth radar on April
201995 are shown in Figures 7 and 8.

The CSI and MAE measure different aspects of the forecast accuracy. The MAE
takes into account actual reflectivity values and is, therefore, a measure of how good
the growth-and-decay aspect is. The CSl is a measure of predicting storm location. We
are good at predicting storm location, but not so good at growth/decay.
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Figure 7: Skill at forecasting a radar reflectivity field compared to a persistence forecast
and to a local correlation approach. (a) Values 30dBZ and above for 15 minutes (b)
Values 30dBZ and above for 30 minutes (c) Values 30dBZ and above for 60 minutes
(d) Mean absolute error in 60 minute forecast



A forecast based on satellite infrared temperature is shown in Figure 9. The data are
taken from GOES-12 imagery on Oct. 9, 2001. The data provided were 100 seconds
apart; we used every 4th frame of the sequence to compute motion estimates. Work to
compute skill scores on satellite data is underway.

A version of this paper with color illustrations is available online at

http://mwww.cimms.ou.edu/ lakshman/Papers/kmeans_motion.pdf

4. Conclusions

It is possible to use a K-Means clustering to provide hierarchical identification of
storms. The clusters can then be used to estimate the movement of the storm cores.
A forecast that projects the movement of the storm cores linearly possesses some skill.
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Figure 8: (a) Reflectivity data from KFWS, April 1995. (b) Most detailed scale of
segmentation, used in forecasting under 30 minutes. (c) Coarse segmentation, used in
forecasting more than 90 minutes. (d) Motion estimate (red is eastward motion) (e)

15min forecast (f) 60min forecast



Figure 9: The original (left) and a 30 minute forecast of infrared temperature from Oct.
9, 2001.



