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A Separable Filter for Directional Smoothing
V Lakshmanan

Abstract— Anisotropic and directional filters can smooth
noisy images while preserving object boundaries. Data from
remote sensing instruments often have missing pixels due to
geometric or power limitations. In such cases, these non-
isotropic filters are very inefficient, because transform meth-
ods cannot be used when there is missing data or when log-
ical operations need to be performed.

A directional filter is introduced in this paper that retains
the ability to handle missing data and is separable, making
it computationally efficient. We demonstrate the directional
filter on weather radar data where it can be used to smooth
along fronts. Since the filter introduced here can be param-
eterized for scale, orientation and aspect ratio, this filter can
be used in any directional filtering application where trans-
form methods cannot be used, but computational efficiency
is desired.

I. Introduction

In automated remote sensing applications that involve
image processing or pattern recognition, image smoothing
is a common preprocessing step, to remove information or
noise at a scale more detailed than required by further pro-
cessing stages. Most conventional image processing filters,
such as the Gaussian filter, the median filter or a local av-
erage [1], are isotropic.

A directional averaging filter [1], [2] can be used to pre-
vent edges from blurring while smoothing by computing a
spatial average in several directions and using all the aver-
ages to determine the new image values. [1] suggests using
the spatial average that is closest to the original pixel value.
[3] suggests using the maximum spatial average. Other pos-
sibilities include using the direction with the least variance
inside the kernel. Directional filters can be used in this sort
of a filter bank for pattern recognition [4] and texture seg-
mentation [5]. In anistotropic diffusion [6], the new image
value at pixel is determined by the original pixel value and
a weighted average of the gradients in several directions.

A common use of directional filters is as part of a lin-
ear combination of deformed basis functions [7], [8]. The
deformation is ”steered” by an adaptable parameter. The
region of support of directional basis functions in steer-
able applications is typically large, so a computationally
efficient filter would be useful in such cases as well.

A. Weather Images

In weather images, it would be useful to use a direc-
tional filter that will preserve the storm front boundaries
by smoothing “along” the front (an elongated storm region)
but not “across” it. Ellipses have been found to be a good
approximation to large scale storm envelopes. The shapes
of automatically identified storms were approximated by
ellipses found through a principal components analysis in
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[9]. Filtering techniques that compute the windowed cross-
correlation of storms with elliptically-shaped filters have
been found to be successful. A bank of elliptical filters was
used in [3] to smooth the large scale envelope of a storm in
weather radar imagery.

A study of different aspect ratios of the ellipses found
that ellipses with minor axes of about 15km and major axes
of about 64km performed best in extracting the envelope of
a typical storm [3]. Weather radars commonly used in the
United States provide resolution of about 1km per pixel
radially and a range of more than 250km. A weather radar
makes a new volume scan every 300 seconds on average.
Thus, we need to filter a radar image that will be 500×500
pixels using a filter that is 15 × 64 pixels in less than 300
seconds. In this paper, we will derive a directional filter
that achieves the necessary speed by having a separable
form (so that the two-dimensional filtering can be done in
two 1-D steps).

The directional filter bank could be speeded up by em-
ploying a Fast Fourier Transform to compute the spatial
averages. Filtering using this modified technique takes 15
seconds [10], well under the update interval of radar scans
and fast enough for real-time implementation. However,
this comes at a cost: it is necessary to assign a numer-
ical value to every pixel in the weather radar image in-
cluding those pixels for which data is missing. So, in a
Fourier Transform based method, pixels for which data
are missing are also included in the cross-correlation or
filter convolution computations. This can result in poor
performance in regions neighboring the missing data. If
missing data are to be recognized and not used in comput-
ing the cross-correlation, the filtering process will become
shift-variant [10]. The correspondence of transform multi-
plication to spatial cross-correlation holds only for linear,
shift-invariant filters.

These, then, are the requirements of the filter required
to smooth weather radar imagery:

1. The filter should be non-isotropic, with the scale and
aspect ratio parameterizable.
2. The angular orientation of the directional filter should
be locally adaptable so that the filter “follows” the shape.
3. The filter should be fast, capable of processing radar
images in real-time.
4. The filter should not use missing data in its calculations
(should not require that missing data be set to some default
value).

In this paper, we introduce a separable directional filter.
We use this filter in a filter bank [3], [10] and demonstrate
the results. This filter is useful beyond radar weather im-
agery; it can be parameterized to extract features at any
arbitrary orientation, scale or aspect ratio at high speeds.



IEEE GEOSC. AND REMOTE SENSING LETTERS, VOL. 1, PP. 192-195,2004 2

II. Separable, Directional Filter

A. Development

A filter that can be used to match elliptically-shaped
regions that are aligned with the co-ordinate axes is given
by: f(x, y) = 1 if x2/a2 + y2/b2 ≤ 1 and 0 otherwise.
where a and b are the axes lengths. The values of a and
b define the scale of the filter and their ratio defines the
aspect ratio or the elongatedness of the ellipses. To match
elongated regions at an arbitrary orientation θ with the x-
axis, we can use the matrix of rotation to transform each
of the points inside the ellipse. This yields

f(x, y) = 1 if (x cos θ−y sin θ)2

a2 + (x sin θ+y cos θ)2

b2 ≤ 1
0 otherwise

(1)
The impulse response of this filter for an aspect ratio of 4:1
and at an orientation of 30o is shown in Figure 1a.

It is easy enough to see that the filter described in Equa-
tion 1 cannot be written in the form f1(x)f2(y) and is there-
fore not separable. Consequently, the filtering cannot be
divided into two stages of row-wise filtering and column-
wise filtering. With large values of a and b, the filtering
problem becomes computationally very expensive. In Sec-
tion II-A.1, we will prove that no oriented low-pass filter
can be separable. In Section II-A.2, it is shown that there
do exist filters that are both oriented and separable, if we
extend the domain of functions that we choose as filters.

A.1 Low-pass Oriented Filter

From Figure 1a (and even without the assumption of an
elliptical shape), any oriented smoothing filter, f , is such
that:

f(x, y) 6= f(−x, y)
f(x, y) 6= f(x,−y)
f(x, y) = f(−x,−y)

(2)

The two inequalities are a result of the meaning of “ori-
ented”, since the orientation we mean is with respect to
the coordinate axes. The symmetry constraint is imposed
by the low-pass nature of the filters we need.

Suppose a low-pass filter, f(x, y), exists that is both
oriented and separable. Then, we can write: f(x, y) =
g1(x) × g2(y) This, along with the inequalities of Equa-
tion 2 yields:

g1(x)× g2(y) 6= g1(x)× g2(−y)
g1(x)× g2(y) 6= g1(−x)× g2(y) (3)

For any value of (x, y) where f(x, y) 6= 0 (so that neither
g1(x) nor g2(y) is zero), we then have:

g1(x) 6= g1(−x) g2(y) 6= g2(−y) (4)

This implies that within the region of support of the filter,
we can define functions h1(x) and h2(y) such that:

g1(x) = h1(x)× g1(−x)
g2(y) = h2(y)× g2(−y) (5)

This, along with the symmetry constraint of Equation 2
yields h1(x) = h2(y)−1 which would lead us to the absurd
conclusion that the filter values in the x and y directions
are dependent, unless the functions h1(x) and h2(y) are
constant. Let h1(x) = α. Then, we have: g1(x) = αg1(−x)
and g2(y) = g2(−y)/α At the origin, f(x, y) 6= 0, since the
filter is a low-pass filter and so, the above equations hold.
They imply that g1(0) = αg1(0), thus yielding the value
of α to be 1. This contradicts Equation 4. Hence, there
exists no low-pass filter, f(x, y), that is both oriented and
separable.

A.2 Domain Change

We have, however, made an assumption that can be re-
laxed. It is not necessary for the filter to be of the form
given g1(x)× g2(y). In particular, the filter could be of the
form:

f(x, y) = f1(x)× f2(y) + f3(x)× f4(y) (6)

which is the sum of two separable filters. Although not sep-
arable in the mathematical sense, the sum of two separable
filters can be implemented so as to be computationally ef-
ficient. In this section, we will find a filter f(x, y) that is
oriented and can be expressed as the sum of two separable
filters.

One class of separable functions is of the form: f(x, y) =
exp(−(x2/a2 + y2/b2)) where the a and b signify how fast
the response falls to zero. Thus, a and b still determine the
scale of the response and their ratio still determines the
elongation of the regions that will be matched although
they are not the lengths of the major and minor axes.

As before, using the matrix of rotation to transform each
of the points in the filter, we obtain the oriented filter:

f(x, y) = exp(−(
(xcosθ − ysinθ)2

a2
+

(xsinθ + ycosθ)2

b2
))

(7)
which can be re-written as: f(x, y) = f1(x)×f2(y)×f3(x, y)
where

f1(x) = exp(−x2( cos2θ
a2 + sin2θ

b2 ))
f2(y) = exp(−y2( cos2θ

b2 + sin2θ
a2 ))

f3(x, y) = exp(−xy( 1
b2 −

1
a2 )sin(2θ))

(8)

The impulse response of this filter for an aspect ratio of 4:1
and at an orientation of 30o is shown in Figure 1b.

The presence of f3(x, y) keeps this function from being
separable. The exponent in the cross-term will be small
when x, y is close to the center of the filter, when the ori-
entation, θ, is small or when the aspect ratio, b/a, is close
to 1. Under any of these conditions, we can approximate f3

by the truncated Taylor series: (1−xy(1/b2−1/a2)sin(2θ))
We can then define two new filters, f4(x) and f5(y) so that:

f4(x) = xf1(x) f5(y) = yf2(y) (9)

Then, the filter f(x, y) can be expressed as the weighted
difference of two separable filters:

f(x, y) = f1(x)× f2(y)− αf4(x)× f5(y) (10)
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a b c d

Fig. 1. Filters oriented at θ = 30o. (a) Ellipse at aspect ratio of 4:1 – not separable, so computationally expensive (b) Localized filter, with
higher weights to the center value (c) Separable approximation to (b) where b is chosen to be 1.5 times the filter window size (d) A separable
filter of the form given in Equation 12. This filter has an uneven weight distribution, with excessive weights given to the extremes of the
ellipse.

where α is given by: (a2 − b2)sin(2θ)/(a2b2).
The filtering process to obtain f1(x)×f2(y) is to first fil-

ter the rows of the image with f1(x). The columns of the re-
sult are filtered by f2(y). A similar process is repeated with
the image using f4(x) and f5(y). The weighted difference
between the two results is the filter response. Incorporat-
ing logic to include only valid pixels in the cross-correlation,
the result will be scaled by the sum of the weights of f1(x)
and f2(y) over valid pixels.

It can be shown that the error in truncating the Taylor
series expansion of exp(−x) at the nth term when 0 < x <
1 is bounded by the (n+1)th term of the expansion. If
we define the truncation error to be the extent to which we
underestimate the true value of f(x, y), then the truncation
error will be positive and bounded by:

err(x, y) = x2f1(x)× y2f2(y)× 0.5(sin(2θ)(
1
a2

− 1
b2

))2

(11)
Since the functions f1(x) and f2(y) fall rapidly to zero for
increasing values of x and y, the error in the approximation
should be small regardless of the aspect ratio or orientation.
The impulse response of the filter in Equation 10 is shown
in Figure 1c. The value of b has been chosen to be 1.5 times
the filter window size and the value of a has been chosen
so that the aspect ratio, b/a is 4.

What is important about the developed filter is not that
it is approximately elliptical but that it is clearly direc-
tional, assigning higher weights to values along one axis,
and lower weights to values orthogonal to that axis. The
elliptical shape is used, only as a target, to arrive at an ap-
proximation that provides separable, directional smooth-
ing.

B. Computational Efficiency

Filtering the rows of an image with f1(x) or f4(x) takes
(2p + 1)N2 computations where (2p + 1) is the size of the
filter window (e.g: 64 in the case of a 15× 64 window) and
N the size of the image. The time to filter the columns of
an image is the same. We need to perform this filtering four
times on each pixel of an image and compute the weighted
difference once. Hence, the computational need of this
technique is of the order of (8p+5)N2. For comparision, the
computational requirement of the inseparable filter given in
Equation 1 is (2p + 1)2N2, on the order of p, less efficient.

If we employ these filters in a filter-bank of q filters, the
total computation cost is of the order of (8p + 5)qN2 com-
putations. The computational cost of a transform method
under these conditions is N2 +(2q +3)N2logN [10]. Thus,
the two techniques are of comparable computational effi-
ciency if the filter size, p is small. The transform method
will be more efficient for large values of p. In practice, the
computational efficiency of the filter introduced here will
depend on the number of valid pixels in the image and on
the number of logical operations performed.

III. Results and Discussion

One method of smoothing is to construct a filter bank [2]
of several directional filters and choose the result of one of
the directional filters at each point [1]. In [3], [10], a filter
bank of 18 filters with θ increments of 10o was used. The
radar image is filtered with each of the filters by comput-
ing the cross-correlation between the image and the filter
window and computing the average of only those pixels in
the window that correspond to valid data.

We used the filter described in [3] (i.e. taking the max-
imum of the responses to filters at different orientations)
and given in Equation 10 and defined the filter response
as the weighted average of those pixels in the window that
correspond to valid data. We chose the values of a and b
so that the aspect ratio was 4 and b was 1.5 times the filter
window size. The radar reflectivity image in Figure 2a was
filtered by a filter bank with filters of the form of Equa-
tion 10. The filtering shown here is performed directly in
the logarithmic (dBZ) space, since the end-results will be
used for clustering values [11]. If the filtered values are
to be used for computing moisture content or precipita-
tion, the filtering may have to be performed in linear (Z)
space. The result is shown in Figure 2b,d. For compar-
ision, the same image is shown filtered using an isotropic
Gaussian filter in Figure 2c. Just west of the radar (bottom
of the image) is an isolated storm cell with a strongly direc-
tional structure, with higher reflectivities to the south. An
isotropic smoothing filter, or a filter that requires a default
value to be set for missing data, will not retain this strong
directionality, as can be seen in Figure 2c. The directional
filter of this paper, which can be implemented efficiently
because it is separable, does retain the directionality.

Further study needs to be done with the separable filter
to find the aspect ratio, filter size and ratio of b to the filter
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(a) (b) (c) (d) (e)

Fig. 2. (a) Part of a weather radar reflectivity image overlaid with 50km-spaced range rings, upto 450km. (b) Smoothed using the filter bank
described in Section III where the directional filter used is the separable filter introduced in this paper and given in Equation 10. (c) The
same image smoothed using an isotropic Gaussian filter of sigma=3. The smoothing has removed the directionality of some isolated storm
cells and leaves behind many local maxima. The directional filter image,(b), does not show those artifacts. (d) Smoothed using Equation 7,
which is not separable. The result is clearly directional and similar to that in (b), a much faster implementation. (e) The same filter as in
(d), but treating all missing data values as zero, which is what would be done in transform methods. The envelope of the smoothed storm is
much larger than the true dimension. In b,c,d, the weighted average was computed based only on pixels that had non-missing data.

No. 5× 21 filters 15× 64 filters
Sep. Insep. FFT Sep. Insep. FFT

1 22 44 22 62 492 22
2 22 45 15 64 506 14
3 23 46 14 65 520 14
4 24 47 14 67 529 15
5 23 47 15 68 532 14
6 24 48 14 69 541 14
7 25 49 14 70 548 14

TABLE I

Seconds to filter a radar image using the separable filter

introduced here, an inseparable form [3] and a transform

method [10].

size that best matches the application. The choice of 4:1,
5 × 21 and 1.5 that were chosen in producing the image
in Figure 2d is an initial one; no claim is made that it is
optimal for radar weather imagery.

Looking at the form of Equation 10, one might wonder if
any other smoothing filter (such as the rectangular window)
might be substituted for f1(x) and f2(y). Defining the two
functions as:

f1(x) = 1 if x2( cos2θ
a2 + sin2θ

b2 ) ≤ 1
f2(y) = 1 if y2( cos2θ

b2 + sin2θ
a2 ) ≤ 1

(12)

and zero elsewhere, we get the filter shown in Figure 1d.
The resulting filter has higher weights assigned to points on
the boundary of the ellipse than to the center pixel and so,
it is clearly not suitable for smoothing. Indeed, the reader
can verify that replacing x2 with |x| in the definitions of
f1(x) and f2(y) also results in a badly formed filter. In this
paper, we have arrived at a filter that happens to satisfy
the criteria of being low-pass, oriented and computationally
efficient. Whether there exists a family of filters that meet
these criteria is a topic for further work.

The time taken to filter a sequence of images using the
filter introduced in this paper is shown in Table I and com-

pared with the time taken when using the filter in Equa-
tion 1. These tests were performed on a Sun Sparc Ultra 5.
The times taken to filter the same sequence of images using
the transform technique of [10] are repeated for compari-
sion. While this filter bank cannot perform the filtering
task as efficiently as the transform method, it retains the
ability to perform logical operations in the filtering process.
In this, it is significantly faster than using the inseparable
form of Equation 1. Thus, we have a computationally effi-
cient filter that retains the ability to handle missing data.

Acknowledgements Funding for this research was pro-
vided under NOAA-OU Cooperative Agreement NA17RJ1227
and the National Science Foundation Grants 9982299 and
0205628.

References

[1] A. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, New Jersey: Prentice Hall, 1989.

[2] R. Bamberger and M. Smith, “A filter bank for the directional
decomposition of images,” IEEE Trans. Signal Proc., vol. 40,
no. 4, pp. 882–893, 1992.

[3] M. Wolfson, B. Forman, R. Hallowell, and M. Moore, “The
growth and decay storm tracker,” in 8th Conference on Avia-
tion, (Dallas, TX), pp. 58–62, Amer. Meteor. Soc., 1999.

[4] S. Park, M. Smith, and R. Mersereau, “Automatic recognition
of SAR targets using directional filter banks and higher-order
neural networks,” in SPIE Aerosense, vol. 2, pp. 1286–1290,
1999.

[5] J. Rosiles and M. Smith, “Texture segmentation using a
biorthogonal directional decomposition,” in Sys. Cyber. Inf.,
2000.

[6] J. Malik and P. Perona, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. on Patt. Anal. Mach. In-
tell., vol. 12, no. 7, pp. 629–639, 1990.

[7] W. Freeman and E. Adelson, “The design and use of steerable
filters,” IEEE Trans. Patt. Anal. and Mach. Intell., vol. 13,
pp. 891–906, 1991.

[8] E. P. Simoncelli and H. Farid, “Steerable wedge filters for local
orientation analysis,” IEEE Trans. Image Proc., vol. 5, no. 9,
pp. 1377–1382, 1996.

[9] M. Dixon, Automated Storm Identification, Tracking and Fore-
casting – A Radar-Based Method. PhD thesis, University of
Colorado and National Center for Atmospheric Research, 1994.

[10] V. Lakshmanan, “Speeding up a large scale filter,” J. of Oc. and
Atm. Tech., vol. 17, pp. 468–473, April 2000.

[11] V. Lakshmanan, R. Rabin, and V. DeBrunner, “Multiscale
storm identification and forecast,” J. Atm. Res., pp. 367–380,
July 2003.


