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Abstract

Echoes in radar reflectivity data do not always correspond to precipitating
particles. Echoes on radar may be due to biological targets such as insects,
birds or wind-borne particles, due to anomalous propagation (AP) or ground
clutter (GC) or due to test and interference patterns that inadvertently seep
into the final products. Although weather forecasters can usually identify, and
account for, the presence of such contamination, automated weather radar
algorithms are drastically affected.

Several horizontal and vertical features have been proposed to discriminate
between precipitation echoes and echoes that do not correspond to precipita-
tion. None of these features by themselves can discriminate between precip-
itating and non-precipitating areas. In this paper, we use a neural network to
combine the individual features, some of which have already been proposed
in the literature and some of which we introduce in this paper, into a single
discriminator that can distinguish between “good” and “bad” echoes (i.e., pre-
cipitation and non-precipitation respectively). The method of computing the
horizontal features leads to statistical anomalies in their distributions near the
edges of echoes. We describe how to avoid presenting such range gates
to the neural network. The gate-by-gate discrimination provided by the neural
network is followed by more holistic postprocessing based on spatial contiguity
constraints and object identification to yield quality-controlled radar reflectivity
scans that have most of the bad echo removed, while leaving most of the good
echo untouched. A possible multi-sensor extension, utilizing satellite data and
surface observations, to the radar-only technique is also demonstrated. We
demonstrate the resulting technique is highly skilled, and that its skill exceeds
that of the currently operational algorithm.
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1. Introduction

From the point of view of automated applications operating on weather data, echoes in
radar reflectivity may be contaminated by undesirable echoes. Some of these applications
require that echoes in the radar reflectivity moment correspond, broadly, to precipitation,
or “weather”. By removing ground clutter contamination, rainfall from the radar data using
the National Weather Service (NWS) Weather Surveillance Radar-Doppler 1998 (WSR-
88D) can be improved (Fulton et al. 1998; Krajewski and Vignal 2001). A large number of
false positives for the Mesocyclone Detection Algorithm (Stumpf et al. 1998) are caused in
regions of clear-air return (McGrath et al. 2002; Mazur et al. 2004). A hierarchical motion
estimation technique segments and forecasts poorly in regions of ground clutter (Lak-
shmanan 2001). Hence, a completely automated algorithm that can remove regions of
non-precipitating echo, such as ground clutter, anomalous propagation, radar artifacts
and clear-air returns from the radar reflectivity field would be very useful in improving the
performance of other automated weather radar algorithms.

Steiner and Smith (2002) describe the causes, effects and characteristics of such con-
tamination in weather radar data. Several research groups have endeavored to determine
individual features, and combinations of features, that can be used to remove range gates
of radar reflectivity data that correspond to “bad echoes”. Local neighborhoods in the
vicinity of every range-gate in the three WSR-88D radar moments (reflectivity, velocity
and spectrum width) were examined by Kessinger et al. (2003) and used for automated
removal of non-precipitating echoes. They achieved success by examining some local
statistical features (the mean, median, and standard deviation within a local neighborhood
of each gate in the moment fields) and a few heuristic features. Steiner and Smith (2002)
introduced the “spinChange” (hereafter, “SPIN”) which is the fraction of gate-to-gate dif-
ferences in a 11x21 local neighborhood that exceed a certain threshold (2dBZ in practice)
to the total number of such differences. Kessinger et al. (2003) introduced the “SIGN”,
the average of the signs of the gate-to-gate difference field within the local neighborhood.
Steiner and Smith (2002) used a decision tree to classify range-gates into two categories
– precipitation and non-precipitation while Kessinger et al. (2003) used a fuzzy rule base
using features that included the SPIN feature introduced by Steiner and Smith (2002). In
addition to these features based on a single elevation scan, some vertical-profile features
were also used – the maximum height of a 5dBZ echo was used by Steiner and Smith
(2002). Kessinger et al. (2003) discussed the use of vertical differences between the
two lowest reflectivity scans. Zhang et al. (2004) used the features introduced in Steiner
and Smith (2002) but calculated them with respect to physical height instead of radar tilts
(elevation angles).

Neural networks (NNs) have been utilized in a variety of meteorological applications.
For example, NNs have been used for prediction of rainfall amounts by Venkatesan et al.
(1997) and for the diagnosis of tornado probability from mesocylones by Marzban and
Stumpf (1996). In fact, Cornelius et al. (1995) attempted to solve the radar quality prob-
lem using neural networks. However, the performance of the neural network was no
better than a fuzzy logic classifier (Kessinger, personal correspondence), and the neural
network attempt was dropped in favor of the much more transparent fuzzy logic approach
described in Kessinger et al. (2003).

Grecu and Krajewski (2000) also used neural networks to classify pixels in WSR-88D
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data as either AP/GC or good echo. The technique of this paper goes beyond that work
by following a formal mechanism for evaluating and selecting input features to the neural
network. We also describe how to account for statistical anomalies in the way the NN
inputs are computed, especially at the edges of echoes. A method of selective emphasis
is followed here to ensure good performance on significant echoes. Finally, the technique
described in this paper removes or retains entire echo regions, not just individual pixels.

A particular challenge in the quality control of radar reflectivity data is that errors in the
quality control process can be additive from the point of view of downstream applications.
This is particularly noticeable in applications that accumulate radar reflectivity data in
space or time. For example, an application that combines radar data from four radars to
form its results will be affected by quality control errors in any of the four radars. Similarly,
an application that accumulates data from one of the radars over time will be faced with
increasing likelihood that the input data are incorrect as the time window of accumulation
increases. Radar data mosaics and precipitation accumulation algorithms, therefore, have
very stringent requirements on data quality. To put these requirements in perspective,
consider using a hypothetical single-radar quality control algorithm that is correct 99% of
the time. For an application that combines data from 130 WSR-88Ds in the continental
United States, the odds of bad data somewhere in the country at any time would be 73%
(1−0.99130). A three-hour accumulation of precipitation based on data from a single radar
collected every 5 minutes will be wrong 30% (1− 0.9936) of the time.

Section 2 is organized as follows. Following a description of the machine learning
technique used, the full set of candidate features is described in Section a. The training
process itself is described in Section b. Based on the results of training, feature selection
was implemented and the training repeated on the selected set of features. The feature
selection and the final list of inputs are described in Section c. Preclassification methods
were devised to ameliorate shortcomings in the way the local features were computed.
The result of the classifier is also subject to spatial postprocessing. Both the preprocess-
ing and the postprocessing are described in Section d. Section 3 describes the results
achieved on an independent test set and discusses the implications.

2. Method

We used a resilient backpropagation neural network (RPROP) as described in Riedmiller
and Braun (1993) with one hidden layer. Every input node was connected to every hidden
node, and every hidden node to the output node. In addition, there was a short-circuit
connection from the input nodes directly to the output node, to capture any linear relation-
ships i.e. the network was ”fully connected” and completely ”feed-forward”. Every hidden
node had a “tanh” activation function, chosen because of its signed range. The output unit
had a sigmoidal activation function: g(a) = (1 + e−a)−1 so that the outputs of the networks
could be interpreted as posterior probabilities (Bishop 1995). Each non-input node had,
associated with it, a bias value which was also part of the training.

The error function that was minimized was a weighted sum of the cross-entropy (which Bishop
(1995) suggests is the best measure of error in binary classification problems) and the
squared sum of all the weights in the network:

E = Ee + λΣw2
ij (1)
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The first term is a variation of the cross-entropy error suggested by Bishop (1995) and is
defined as:

Ee = −
N∑

n=1

cn(tnlnyn + (1− tn)ln(1− yn)) (2)

where tn is the target value of the nth set of input features, called a pattern. The target
value for a pattern is 0 if the range gate has “bad echoes” and 1 if it has “good echoes”.
yn is the actual output of the neural network for that pattern input. N is the total number of
patterns. The cost, cn, captures the importance of that pattern (This process of selective
emphasis is explained in more detail in Section b). The second, squared weights, term
of Equation 1 attempts to reduce the size of the weights, and thus improves generaliza-
tion (Krogh and Hertz 1992). The relative weight, λ, of the two measures is computed
every 50 epochs within a Bayesian framework with the assumption that the weights and
the errors have Gaussian distributions so that the ratio of their variances gives a measure
of how much to decay the weights (MacKay 1992; Bishop 1995). We started by weighing
the sum-of-weights twice as much as the cross-entropy term (λ = 2), updated λ based
on the distribution of the weights and errors every 50 epochs (one epoch is a complete
pass through the entire set of training patterns) and stopped the learning process at 1000
epochs. We chose the final weights of the network from the epoch at which the validation
entropy error was minimum, as will be discussed in Section b.

Doppler velocity data can be range-folded (aliased). In the WSR-88D, at the lowest
tilt, the velocity scan has a shorter range than the reflectivity one. We therefore divided
the training range-gates into two groups – one where velocity data were available and
another where there was no Doppler velocity (or spectrum width) information. Thus, two
separate neural networks were trained. In real-time operation, either the with-velocity or
the reflectivity-only network is invoked for each range-gate depending on whether there
are velocity data at that point.

At the end of training, the with-velocity network had 28 inputs, 4 hidden nodes and one
output while the reflectivity-only network had 22 inputs, 8 hidden nodes and one output.

a. Input Features

We chose as potential inputs to the neural network features culled from earlier quality-
control attempts – the AP and ground clutter algorithm of Steiner and Smith (2002), the
NEXRAD radar echo classification algorithm (Kessinger et al. 2003), and the inputs used
in the quality-control preprocessing in NEXRAD preciptation products (Fulton et al. 1998).
These included the data value, the mean, the median and the variance computed in local
neighborhoods of each of the three moments (reflectivity, velocity, spectrum width) at the
lowest tilt of the radar. In addition, we took the same four values for the second lowest
tilt of the radar. We also utilized some of the textural features that have been found to be
useful in discriminating between precipitation and AP/GC. These were the SPIN (Steiner
and Smith 2002), the gate-to-gate average square difference (Kessinger et al. 2003) and
the SIGN (Kessinger et al. 2003). We included the vertical gradient (difference between
the reflectivities at the two lowest scans, Fulton et al. (1998)) as another input to the neural
network.

In order that it can operate in real-time, the QC algorithm should not wait for the end of
a volume scan before being able to produce QC’ed reflectivity scans. In order to operate
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tilt-by-tilt in real-time, it should be able to compute a feature such as the vertical difference
(that depends on the two lowest tilts) even before the second tilt arrives. Otherwise,
downstream algorithms will be faced with a 20-60 second delay. Therefore, all the vertical
features were computed in a “virtual volume” (Lynn and Lakshmanan 2002) sense i.e.
the latest available elevation scan at any instant in time was used to fill in the volume.
For example, the vertical gradient would be updated twice within a volume scan: once at
the end of the first elevation scan when the higher elevation scan used was from the last
volume scan, and again when the second elevation scan from the volume scan arrived.
As a result, in real-time, the quality-control of the first elevation scan is performed using
the vertical difference feature computed from the staggered difference, but the quality-
control of all the higher tilts is performed using the aligned difference. Because the NN is
trained on such staggered differences, it learns to account for them.

In addition to these discriminants described in the literature, we utilized a few others:

1. The local minimum of the variance, calculated by first computing the variance within
a neighborhood of every gate, and then computing the local minimum in neighbor-
hood around each gate of the variance field. This quantity is computed for the lowest
two reflectivity scans and the lowest velocity and spectrum width scans. For exam-
ple, the variance of the reflectivity field could be large due either to high texture,
such as in AP/GC, or because of edge effects. Using the minimum variance avoids
large variance close to the edge of echoes.

2. The mean and local variance computed in a 5x1 neighborhood i.e. along a radial
for the lowest reflectivity scan. Many problems in radar data, especially hardware
issues, may impact a single radial while leaving adjacent radials unaffected.

3. The maximum vertical reflectivity, over all the elevations. Like all vertical features,
the vertical maximum is computed in a virtual volume sense.

4. The fraction of range-gates in a 5x5 local neighborhood that had values greater than
5 dBZ in the lowest reflectivity scan and in the vertical maximum field. This feature,
referred to as “echo size” in this paper, is useful in detecting speckle.

5. A weighted average of the reflectivity (dBZ) values over all the elevations where
the weight of each data point is given by the height of that range-gate above the
radar. This takes into account the entire vertical profile instead of just the first two
elevations. A large weighted average is associated with tall thunderstorms, and
provides a counterbalance to the large horizontal gradients associated with such
thunderstorms. AP/GC, on the other hand, have small weighted averages but also
have large horizontal gradients.

6. Echo-top height defined as the maximum height of reflectivity above 0, 5 and 10
dBZ thresholds. Convective storms tend to have large values of echo-top heights.

7. The physical height at which the maximum reflectivity echo occurs at this range and
azimuth from the radar. Higher echoes are typically more reliable.

8. The change in the maximum vertical reflectivity from this virtual volume to the last
complete volume. Good echoes rarely have large temporal gradients.

6



9. The outbound distance along a radial to a gate with zero velocity, i.e. at a particular
gate, the distance to a gate further away from the radar with zero velocity. A gate
with zero-velocity is likely to be AP/GC. Gates between the radar and the AP gate
are likely to also be AP, making this input potentially useful.

10. The inbound distance along a radial to a gate with an echo-top over 3km, i.e. at a
particular gate, the distance to a gate closer to the radar that has an echo top higher
than 3km. This input is potentially useful because gates that come after such a high
echo gate are likely to be good.

All the neural network inputs were scaled such that each feature in the training data
exhibited a zero mean and a unit variance when the mean and variance are computed
across all patterns in the entire with-velocity training set. The mean and variance com-
puted on the training set are used to scale the run-time values.

Histograms of a few selected features are shown in Figure 1. It should be noted that
these features are not linear discriminants by any means – it is the combination of features
that gives the neural network its discriminating ability. The histograms in Figure 1c and
d illustrate the result of selective emphasis (explained in Section b) we adopt during the
training, so that larger reflectivities are not automatically accepted.

We used these features to train a neural network and then removed the features one
at a time. If the resulting neural network had essentially the same performance after a
feature was removed, that feature was permanently removed. The final list of features
used is listed in Section c.

b. Training process

With the neural network architecture arbitrarily fixed as above, the training process con-
sists of choosing (a) the number of hidden nodes (b) the weights of each link between
nodes and (c) the set of input features to use. This section describes our approach to
selecting the weights and number of hidden nodes of the NN. Section c describes the
method of choosing the input features. A neural network is, essentially, an evidence-
based framework. The weights were chosen to minimize the cross-entropy measure on
a carefully selected set of radar volume scans. These volume scans covered a variety
of phenomena that the resulting network was expected to discriminate with skill (See
Table 1).

A human interpreter examined these volume scans and drew polygons using the
WDSS-II display (Hondl 2002) to select “bad” echo regions (See Figure 2). The expert
determined this based on analyzing loops of reflectivity data, examining the velocity data,
and considering outside factors such as the presence or absence of terrain and seasonal
effects. Where the expert was doubtful, the echoes were accepted as good echo so that
the QC procedures would err on the side of caution. An automated procedure used these
human-generated polygons to classify every range gate of the training data set into the
two categories (precipitating and non-precipitating).

The data we have are not representative of true apriori probabilities, since each of
the scenarios is a rare event. Patterns are assigned different importance factors cn (See
Equation 2). It is easy to see that if the cost factors, cn, are positive integers, the cost
factor can be moved out of the error equation, by simply repeating the nth pattern cn − 1
times.
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a b

c d

Figure 1: Histograms of selected features over the entire training data set. (a) SPIN (b)
Standard deviation of velocity (c) Vertical maximum. It should be noted that, as a result
of careful construction of the training set and selective emphasis (See Section b), the
histograms in (c) are nearly identical – this is not the apriori distribution of the two classes
since AP is rare, and clear-air return tends to be smaller reflectivity values. (d) The apriori
distribution of the vertical maximum values in the training set before selective emphasis.
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Figure 2: An expert hand-truthed the training and validation volume scans by drawing
polygons around echoes that he believed did not correspond to precipitation.
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Table 1: The volume scans used to train the WSR-88D quality-control neural network
described in this paper.

Radar Location Volume Scan start time Reason chosen
KABR Aberdeen, SD 2005-07-28 20:28:46 Biological
KAMA Amarillo, TX 2004-04-29 20:47:19 Sun spikes, small cells
KBHX Eureka, CA 2003-05-02 16:17:09 Stratiform
KFDR Fredrick, OK 2005-05-03 14:19:38 Weak convection
KFWS Fort Worth, TX 1995-04-19 03:58:51 Biological, ground clutter
KFWS Fort Worth, TX 1995-04-19 15:55:37 Weak convection
KFWS Fort Worth, TX 1995-04-20 04:59:04 Insects, convection
KFWS Fort Worth, TX 1995-04-20 18:55:57 AP, squall line
KICT Wichita, KS 2003-04-24 06:09:24 Convection
KLIX New Orleans, LA 2005-08-17 14:09:42 Weak convection
KLSX St. Louis, MO 1998-11-10 05:37:17 Clutter near radar; convection
KMVX Grand Forks, ND 2005-01-01 19:55:47 Snow
KTLX Oklahoma City, OK 2002-10-18 12:51:21 Stratiform, sun spike
KTLX Oklahoma City, OK 2002-10-19 16:13:43 Convection, small cells
KTLX Oklahoma City, OK 2004-04-29 18:29:11 Sun spikes, biological
KTLX Oklahoma City, OK 2005-05-05 18:05:40 Test pattern
KUDX Rapid City, ND 2005-02-15 02:29:57 Snow
KYUX Yuma, AZ 2005-09-01 15:11:46 AP far away from radar

The importance factors are chosen based on the vertical maximum of the reflectivity
(a process we call ”selective emphasis”) to satisfy two goals: (a) to achieve an apriori
probability, given any reflectivity value, of close to 0.5, so that the network is forced to rely
on other factors. (b) to achieve better performance on strong echoes than on weak ones
on the grounds that strong echoes are more important.

In the velocity network (a proxy for range-gates close to the radar, See Section 2),
precipitating echoes are repeated d/20 times while non-precipitating echoes are repeated
d/10 times where d is the reflectivity value. Thus, AP with large reflectivity values is em-
phasized as are strong reflectivity cores. The emphasis is done in such a way that the
resulting apriori probability in the training set at any reflectivity value is close to 0.5, yield-
ing a balanced distribution of patterns. In the reflectivity-only network, non-precipitating
echoes are repeated 3d/5 times. As can be seen from Equation 2, the repeating of pat-
terns has the same effect as imposing a cost factor to each pattern. We are, in essence,
assigning a higher cost to misclassifying high-dBZ range-gates than to misclassifying
low-dBZ range-gates. The histograms in Figures 1c and d show the effect of this selective
emphasis – note that the histograms in Figure 1c are shifted to the right (higher reflectiv-
ity values) and have approximately equal probabilities at all reflectivity values (balanced
distribution).

Some range gates can be classified very easily because they are obvious. To aid pro-
cessing efficiency both in the training stage, and in the running stage, we pre-classify such
range-gates using criteria described in Section d. These criteria also account for short-
comings in the way that the input features used for classification are computed. Such
range-gates are not presented to the neural network in training, and range-gates that
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Table 2: The volume scans used as a validation set to test the generalization of a neural
network.

Radar Location Volume Scan start time Reason chosen
KAMA Amarillo, TX 1994-05-24 10:53 AP
KAMA Amarillo, TX 2004-04-29 20:42:49 Weak convection, interference
KAMA Amarillo, TX 2005-08-29 14:08:11 AP far away from the radar
KDDC Dodge City, KS 2005-04-21 01:51:51 Convection, interference
KDLH Duluth, MN 2005-01-01 19:56:45 Snow
KFSD Sioux Falls, SD 2005-07-28 20:35:28 Biological
KHDX Holloman, NM 2005-05-28 10:29:36 Interference
KINX Tulsa, OK 2004-04-29 18:31:06 Weak convection, sun strobes
KLNX N. Platte, NE 2005-02-15 02:53:23 Snow
KSGF Springfield, MO 2005-08-17 18:57:09 Weak Convection, biological
KTLX Oklahoma City, OK 2003-06-11 08:06:51 Weak convection
KTLX Oklahoma City, OK 2003-06-11 11:24:43 Sun strobe
KTLX Oklahoma City, OK 2003-06-13 09:18:27 Biological, convection

match these criteria are pre-classified the same way in run-time as well. The preclassifi-
cation process is described in more detail in Section d.

The training process is an automated non-linear optimization during which we need to
find weights that yield a good discrimination function on the training data but are not so
over-fit to the training data that they do poorly on independent data.

A validation set can ensure a network’s generalization, typically through the use of
early stopping methods (Bishop 1995). In the neural network literature, a validation set is
also utilized to select the architecture of the neural network (Masters 1993). We used a
validation set that consisted of features derived from several volume scans that exhibited
AP, convection, clear-air return, stratiform rain and radar test patterns (See Table 2).

During each training run, the RPROP algorithm was utilized to optmize the weights on
the training data cases. At each iteration of the optimization process, the performance
of the weights on the validation set was checked. Even though the training entropy error
may continually decrease, the validation entropy error typically does not (See Figure 3a).
We select the weights corresponding to the stage when the validation entropy error is
minimum; thus the use of a quasi-independent validation set helps to prevent the weights
being over-fit to the training set. We trained each network with different numbers of hid-
den nodes and selected the number of nodes for which the validation entropy error is
minimum, as shown in Figure 3b. Thus, we used the validation set, both to determine
when to stop within a training run, and to pick the final architecture of the neural network.
Other than to choose the number of hidden nodes, we did not consider any alternate net-
work topologies (such as two layers of hidden nodes) since, in theory at least, a single
hidden layer is enough to interpolate any continuous function to arbitrary accuracy (Bishop
1995).

Note that the cross-entropy error criterion for the with-velocity network is less than that
of the reflectivity-only network. This is a measure of how useful the velocity information is
to classification accuracy.

We used a testing set, independent of the training and validation sets, as decribed in
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a

b

Figure 3: Using a validation set to decide when to stop the training, and to decide on
the number of hidden nodes. The y-axis is Ee/N – see Equation 2. (a) Training error vs
Validation error: Note that the training error continues to decrease but the validation error
starts to increase after a while, showing that the training is becoming counter-productive.
“wv” refers to the neural network with velocity data while “wov” refers to the NN without
velocity data – See Section 2 for the description of why there are two networks. (b) Vali-
dation error curves for different numbers of hidden nodes. The number of hidden nodes
at which the validation error was minimized was chosen as the network architecture.
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Section 3, and it is this independent set that the results are reported on.

c. Feature selection

In the process of training the networks, each of the computed inputs was removed and
the neural network re-optimized. The probability of detection of precipitating echoes and
the false alarm rates for both networks (with-velocity and reflectivity-only, See Section 2)
were noted. If removing the input had no significant negative effect on the four statistics
(POD and FAR on the two networks), the input was permanently removed.

For example, using this process, it was found that retaining just the mean and variance
in the local neighborhood was enough – use of the median did not improve the capability
of the neural network to learn the data, as measured by the cross-entropy. We discovered
that the use of some features hurt trainability, especially when the features in question
were highly effective in a univariate sense. This was probably because the neural network
got caught in local minima. In such cases, we reformulated the feature to avoid this
problem – the echo size, echo top and vertical difference were defined so that their use
does not lead to poor performance.

We discovered that computing the echo top with a threshold of either 0 dBZ or 10 dBZ,
depending on whether the ground temperature at the radar site was below or above 10 C
respectively, greatly improved the performance. We also found that computing the echo
top only for elevations above the lowest elevation improves the reliability of this measure.
Thus, the echo top parameter refered to in this paper is the maximum physical height to
the top of an echo when it reaches either 0 dBZ or 10 dBZ in elevation scans other than
the lowest scan of elevation of reflectivity.

The vertical difference between the two lowest elevation scans leads to poorly per-
forming neural networks, probably because it is such a good univariate classifier. We
defined the vertical difference as the difference between the lowest elevation scan and
the first elevation scan that crosses 3km at this range; thus at far ranges, the vertical dif-
ference is always zero. This feature is used only close-in to the radar where the difference
is between the lowest scan and a scan at a reliable height.

The local neighborhood for all the statistics, including the SPIN, was chosen to be 5x5,
after we experimented with 3x3 and 7x7 sizes. Choosing the neighborhood size for each
statistic individually might yield better results, but the additional complexity may not be
worth the reward . In the case of SPIN, for example, the 11x21 neighborhood size used
by Steiner and Smith (2002) yielded a slightly better performance, but the computation
then takes nearly eight times longer.

Following this process of pruning the input features, we were left with the following 28
input features at every gate – from the lowest velocity scan: (1) value, (2) local mean,
(3) local variance, (4) difference, (5) minimum variance; from the lowest spectrum width
scan: (6) value; from the lowest reflectivity scan: (7) local mean, (8) local variance, (9)
difference, (10) variance along radials, (11) difference along radials, (12) local minimum
variance, (13) SPIN, (14) inflections along radial (Kessinger et al. 2003); from the second
lowest reflectivity scan: (15) local mean, (16) local variance, (17) local difference, (18)
variance along radials, (19) difference along radials, (20) minimum variance; within a vir-
tual volume scan: (21) vertical maximum, (22) weighted average, (23) vertical difference,
(24) echo top, (25) height of maximum, (26) echo size in vertical composite, (27) in-bound
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distance along radial to 3km echo top and (28) out-bound distance along radial to gate
with zero velocity. The “difference” statistic is simply the difference between the value at
that gate and the mean within the neighborhood and is used to decorrelate the pixel value
from the local mean.

The reflectivity-only neural network, used where there is no velocity data or where
the velocity data are range folded, had only 22 input features since the first six features
(corresponding to velocity and spectrum width) are unavailable. If removing a reflectivity-
based feature affected either the with-velocity network or the reflectivity-only network, that
feature was retained.

d. Preprocessing and postprocessing

The neural network simply provides a function that maps the input features to a number in
the range [0,1]. The quality of the output is only as good as the input features. In general,
a more reliable input space yields a better performing neural network.

Many of our input features are computed in local neighborhoods around a particular
gate. Such features exhibit unwanted characteristics near the edges of storms. Therefore,
the echo size parameter is used to preclassify such edge range-gates. Only gates where
the echo size is greater than 0.9 are presented to the neural network. Gates with echo
sizes less than 0.5 are classified as non-precipitation – this is akin to median filtering
the input data. Gates with echo sizes between 0.5 and 0.9 simply pick up whatever the
majority of their neighbors is classified as. The effect of this median filtering and assigning
a “don’t care” status is shown in Figure 4a and b.

In radar reflectivity data, range gates are set to be invalid in two situations: (a) the
range gate is not sensed by the radar at all, such as if the gate in question is out of the
radar range at that elevation angle (b) the range gate in question was sensed, but the re-
sulting echo’s signal was not much stronger than the noise normally expected. To improve
the robustness of the statistics being computed, we sought to distinguish between these
two situations. We set all range-gates in the reflectivity fields which could conceivably
have had a radar return (those range-gates with a height below 12km) and which had a
radar return below the noise threshold (and was therefore set to missing) to be zero. Thus,
the only missing data values correspond to atmospheric regions which are not sensed by
the radar at all. At this stage, range gates that are expected to be beam-blocked, applying
the technique of O’Bannon (1997), are also set to have missing data. Values with 0dBZ
are used in computing local features but missing data are not.

Features such as sun-strobes are rare even within the context of an elevation scan
and difficult, therefore, for a gradient-descent function such a neural network to optimize.
Consequently, a heuristic method is employed to detect and remove such radials. We look
for radials in which more than 90% of the gates are filled with reflectivity values greater
than 0 dBZ and whose values are linearly increasing (with a correlation coefficient greater
than 0.8). If less than four radials in the elevation scan are mostly filled, then those radials
with a 90% fill and 0.8 correlation coefficient are removed from the data and replaced
by interpolating neighboring radials, as shown in Figure 5. A future study could examine
whether the use of sun-rise and sun-set times and the position of the sun relative to the
radar position can be used to form an estimate of regions where sun-strobes are likely.

The echo top parameter is an extremely accurate univariate classifier once small
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c d

Figure 4: The echo size parameter, a measure of how much of a pixel’s neighborhood
is filled – See Section a, is used during preprocessing to avoid presenting the neural
network with statistics computed in poorly filled areas. Postprocessing the NN confidence
field based on spatial analysis reduces random errors. (a) original image (b) precipitation
confidence before postprocessing (c) precipitation confidence after postprocessing (d)
final QC’ed product.

a b

Figure 5: A heuristic method is used to identify radials that are completely filled and mono-
tonically increasing. Such radials are replaced by a linear interpolation of their (good)
neighbors. (a) original data (b) quality-controlled.
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echoes (echo size less than 0.5 and radial artifacts are removed from the presented input
vectors. Thus, if a range gate has an echo top greater than 3 km, it is preclassified as be-
ing precipitation. As a result of pre-classification, the range gates presented to the neural
network are the “hard” cases – those range gates with an echo top less than 3km, with
radials that look reasonable and within an area of echo.

Although the neural network computes the posterior probability that given the input
vector, the range-gate corresponds to precipitating echoes, adjacent range-gates are not
truly independent. In fact, the training process, using polygons to delineate “good” and
“bad” areas, underscores the fact that the quality-control needs to be performed on a
spatial, rather than on a range-gate, basis.

A simpler form of the texture segmentation introduced in Lakshmanan et al. (2003) is
performed on the vertical maximum field. The simplification is that only a single-scale of
segmentation, rather than the multiscale segmentation described in that paper, is desired.
Then, the mean of the NN output within each cluster is determined, and if the mean is
below a certain threshold (arbitrarily chosen to be 0.5), the entire cluster is removed as
not corresponding to precipitation.

Figure 4c demonstrates how postprocessing the resulting field has removed random1

errors within the clusters to yield an almost completely correct classification.

3. Results and Discussion

A diverse set of sixteen volume scans (independent of the those chosen for training and
validation, shown in Table 3) were chosen and bad echoes marked on these volume
scans by a human observer. An automated routine then used these polygons to create
a “target” set of elevation scans. These are the products that an ideal quality-control
algorithm would produce. The same volume scans were QC’ed using the neural network
introduced here and using the Build 7 version of the radar echo classifier implemented in
the Open Radar Products Generator (Jain et al. 1998) of the NEXRAD system.

Two sets of comparisons were performed. From the cleaned-up elevation scans, Re-
flectivity Composite (vertical maximum) and Vertical Integrated Liquid (VIL; Greene and
Clark (1972)) products were created. These were then compared range-gate-by-range-
gate with the same products created from the target elevation scans. The comparisons
were formulated as follows: the probability of detection is perfect (1.0) if all precipitating
echoes are retained in the final products. The false alarm ratio is perfect (0.0) if none
of the contaminants remain in the final products. The Critical Success Index (CSI) is a
combination of these two measures (Donaldson et al. 1975), and is formulated similarly
i.e. as a measure of the algorithm’s skill in detecting and retaining precipitation echoes.
The Heidke skill score (HSS) compares the performance of the algorithm against a theo-
retical algorithm that operates purely on chance (Heidke 1926). Since the HSS requires
the number of non-precipitating range gates that were correctly identified, this number
was taken as the number of range gates from the radar that had an echo in the range

1Statisticians distinguish between random errors and systemic (or systematic) errors. Systemic errors
are errors due to an identifiable cause and can often be resolved. On the other hand, random errors are a
result of the underlying probability distributions, such as the overlap between them, and can not be avoided.
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Table 3: The volume scans used to evaluate the WSR-88D quality-control neural tech-
nique described in this paper.

Radar Location Volume Scan start time Reason chosen
KLBB Lubbock, TX 1995-10-05 01:44 AP
KTLX Oklahoma City, OK 1996-06-16 14:16 AP, rain
KUEX Hastings, NE 2002-06-13 02:31 Strong convection
KICT Wichita, KS 2003-04-19 20:32 Weak convection
KDVN Davenport, IA 2003-05-01 04:36 Weak convection
KAMA Amarillo, TX 2003-05-03 21:50 Biological
KTLX Oklahoma City, OK 2004-04-30 22:31 Strong convection
KFDR Fredrick, OK 2004-07-16 02:59 Bats
KINX Tulsa, OK 2004-08-17 11:21 Speckle
KCYS Cheyenne, WY 2004-09-21 00:57 Sun ray
KFFC Atlanta, GA 2004-09-27 16:15 Stratiform rain
KICT Wichita, KS 2004-10-26 08:01 Stratiform rain
KILX Lincoln, IL 2004-10-26 23:56 Stratiform rain

KHDX Holloman, NE 2005-05-28 10:34 Hardware fault
KDGX Jackson, MS 2005-06-07 22:15 Weak convection

(−∞, 0) dBZ in both the original and the quality-controlled reflectivity composite fields (or
V IL = 0 in the case of the VIL fields).

Using the Reflectivity Composite as a verification mechanism ensures that we are
assessing the algorithm across all reflectivity values, regardless of the height at which they
occur. VIL, on the other hand, serves as a measure of the presence of significant echo.
Since a good QC technique should not remove good data, using VIL as a verification
measure is a way to assess the extent to which good data are retained.

The statistics were computed on the test data set with one of the test cases removed
at each time. This “leave-one-out” procedure, also termed jackknifing, can be used to
estimate the standard error of a statistic (Efron and Tibshirani 1997). What is reported
in Table 4 is the mean skill score achieved and the 95% confidence interval assuming a
normal distribution of skill scores. A more complete statement of the results, including the
individual cases, is available in Fritz et al. (2006).

a. Assessing performance of a QC algorithm

In this paper, the performance of the quality control technique was assessed by comparing
against the skill of a human expert. Thus, the numbers in Table 4 reflect the performance
of the algorithm assuming that the human expert is perfect. To reduce expert bias, a
different human expert from the one who truthed the training and validation cases truthed
the test cases.

Other techniques of assessment have been followed in the literature. Kessinger et al.
(2003) validated their technique by comparing the results of their QC technique running
on polarimetric radar data against the results of a hydrometeor classification algorithm
on the assumption that the hydrometeor classifier is perfect. This was reasonable since
their study focused on AP/GC mitigation and the polarimetric algorithms do quite well in
identifying AP/GC. Our goal in this research was to achieve a quality-control algorithm
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Table 4: The quality control neural network (QCNN) described in this paper was com-
pared to the Radar Echo Classifier (REC), the operational algorithm implemented on the
NEXRAD system. Reflectivity composite and polar VIL products were computed from the
QC’ed reflectivity elevation scans and compared range-gate by range-gate. The quoted
skill scores are listed to two significant digits with a 95% confidence interval. The confi-
dence interval was estimated by jackknifing the data cases.

Product Data range Measure No QC REC QCNN
Composite > 0 dBZ CSI 0.61 +/- 0.06 0.59 +/- 0.057 0.86 +/- 0.011

FAR 0.39 +/- 0.06 0.4 +/- 0.06 0.02 +/- 0.0072
POD 1 +/- 0 0.96 +/- 0.0031 0.88 +/- 0.0088
HSS 0.89 +/- 0.02 0.88 +/- 0.019 0.98 +/- 0.0016

Composite > 10 dBZ CSI 0.68 +/- 0.071 0.66 +/- 0.069 0.96 +/- 0.0083
FAR 0.32 +/- 0.071 0.32 +/- 0.073 0.02 +/- 0.007
POD 1 +/- 0 0.94 +/- 0.0023 0.92 +/- 0.0039
HSS 0.93 +/- 0.017 0.93 +/- 0.016 0.99 +/- 0.0011

Composite > 30 dBZ CSI 0.92 +/- 0.02 0.84 +/- 0.014 1 +/- 0.00072
FAR 0.08 +/- 0.02 0.09 +/- 0.011 0 +/- 0.00057
POD 1 +/- 0 0.92 +/- 0.0065 1 +/- 0.00029
HSS 1 +/- 0.00064 0.99 +/- 0.00052 1 +/- 0

Composite > 40 dBZ CSI 0.91 +/- 0.023 0.8 +/- 0.013 1 +/- 0.00038
FAR 0.09 +/- 0.023 0.1 +/- 0.0074 0 +/- 0.00039
POD 1 +/- 0 0.88 +/- 0.0088 1 +/- 0
HSS 1 +/- 0.00016 1 +/- 0.00018 1 +/- 0

VIL > 0 kg/m2 CSI 0.53 +/- 0.16 0.48 +/- 0.13 1 +/- 0.0011
FAR 0.47 +/- 0.16 0.49 +/- 0.15 0 +/- 0.00053
POD 1 +/- 0 0.9 +/- 0.0078 1 +/- 0.00084
HSS 0.97 +/- 0.0091 0.97 +/- 0.0085 1 +/- 0

VIL > 25 kg/m2 CSI 1 +/- 0.0022 0.65 +/- 0.033 0.99 +/- 0.0027
FAR 0 +/- 0.0022 0.19 +/- 0.025 0 +/- 0.0022
POD 1 +/- 0 0.76 +/- 0.026 1 +/- 0.00075
HSS 1 +/- 0 1 +/- 0 1 +/- 0

18



that worked on a variety of real-world observed effects including hardware faults and
interference patterns. It is unclear what a hydrometeor classification algorithm would
provide in that case. Because there are few polarimetric radars in the country at present,
such an approach would also have limited the climatological diversity of test cases.

Another way that quality-control algorithms have been validated is by comparing the
result of a precipitation estimate from the radar fields to observed rain rates (Robinson
et al. 2001; Krajewski and Vignal 2001). One advantage of this is that it permits large vol-
ume studies – for example, Krajewski and Vignal (2001) used 10000 volume scans, albeit
all from the same radar and all in warm weather. The problem with such a verification
method is that the skill of the QC technique has to be inferred by whether precipitation es-
timates on the QC’ed data are less biased (as compared to a rain gage) than precipitation
estimates carried out on the original data. Such an inference is problematic – reduction
in bias can be achieved with unskilled operations, not just by removing true contamina-
tion. This is because the mapping of reflectivity (Z) to rainfall (R) is fungible. Thus, if the
chosen Z-R relationship leads to overestimates of precipation, a quality-control algorithm
that removes good data along with AP/GC will lead to lower bias. Similarly, if the chosen
Z-R relationship leads to underestimates of precipitation, a quality-control algorithm that
does not remove all the contaminants will lead to a lower bias. If the Z/R relationship is
estimated directly from the data, the very process of fitting can lead to incorrect inferences
since a contaminated field may end up being fit better than a true one.

Thus, assessing quality-control algorithms by comparing against a human expert pro-
vides a comparison that is not subject to biases in other sensors or algorithms. The
drawback is that automated large scale studies of the sort performed by Krajewski and
Vignal (2001) are not possible because on the reliance of a human expert to provide
“truth”. Because hand-truthing of data takes inordinate amounts of time, the number of
truthed data cases has to be small for such a direct evaluation method.

The size of our training, validation and testing sets – about a dozen volume scans
each – may seem insignificantly small. When we started the study, we imagined that
we would have to build an enormous database of artifacts and good cases from radars
all over the country over many years in order to build a robust algorithm. Instead, we
found that an algorithm trained only on a few selected volume scans could do surprisingly
well on data from anywhere in the United States. This was because while we needed
to ensure, for example, that we had a stratiform rain case in our training, it didn’t matter
where in the country the case came from. Thus, we took care to select the limited volume
scans carefully keeping in mind the underlying diversity of the data. We have verified that
the algorithm does work equally well on radars across the country by monitoring a 1km
resolution multi-radar mosaic of QC’ed radar data (Lakshmanan et al. 2006) from 130+
radars across the United States. This multi-radar mosaic, which we have been monitoring
since April 2005, is available at http://wdssii.nssl.noaa.gov/. The experience gained in
thus selecting a representative training set came in handy in when choosing a diverse
testing set as well and explains the relatively small size of our testing set.

b. Comparison with the operational algorithm

The measures of skill on the Reflectivity Composite product serve as a proxy for visual
quality, while the measures of skill on the VIL product serve as a proxy for the effect on
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severe weather algorithms.
Range-gates with VIL greater than 25kg/m2 represent areas of significant convection.

It is curious that when VIL is directly computed on the reflectivity data, without an interme-
diate quality-control step, the false alarm rate is near-zero for values greater than 25kg/m2.
This is because the VIL product is based on a weighted integration where echoes aloft
receive large weights. The VIL is not affected so much by shallow, biological contamina-
tion or by AP/GC close to the ground. In other words, VIL values greater than 25kg/m2

are obtained in regions where there are high reflectivity values in several elevation scans
– a condition not seen in bad echo regions.

The effect of assigning higher costs (cn in Equation 2) to higher reflectivity values dur-
ing the training process is clear in the final results; the QCNN makes most of its mistakes
at low values of reflectivity and is very good at reflectivity values above 30 dBZ.

As can be readily seen, both from Table 4 and from the examples in Figure 6, the neu-
ral network outperforms the fuzzy logic automated technique of Kessinger et al. (2003),
one of a number of algorithms that perform similarly (Robinson et al. 2001).

It should be noted that the operational REC algorithm, like most earlier attempts at
automated quality control of radar reflectivity data, was designed only to remove AP and
ground clutter. Other forms of the REC, to detect insects and precipitation, have been
devised but not implemented operationally (Kessinger, personal communication). It is
unclear how these individual algorithms would be combined to yield a single all-purpose
QC algorithm. When quality controlled data are used as inputs to algorithms such as
precipitation estimation from radar, all forms of contamination need to be removed, not
just AP. Hence, our goal was to test against all forms of contamination. The REC columns
in Table 4 should not be used as an assessment of the skill of the algorithm itself (such an
assessment would concentrate only on AP cases). Instead, the skill scores reported for
REC should be used as an indication of the results that will result if the REC AP detection
algorithm is used as the sole form of quality control in a real-world situation where all sorts
of contaminants are present. In other words, the operational algorithm may or may not
be a poor performer (our test set did not include enough AP cases to say one way or the
other); it’s just that an AP-only approach is insufficient as a preprocessor to weather radar
algorithms.

c. Effect of postprocessing

The precipitation confidence field that results from the neural network is subject to random
“point” errors. So, the field is postprocessed as described in Section d and demonstrated
in Figure 4. Such spatial contiguity tests and object identification serve to remove random
error, yielding quality-controlled fields where good data are not removed at random range
gates. However, such spatial processing could also have side-effects, especially where
there are regions of bad data adjoint to a region of good echo. Because of their spatial
contiguity, the two echo regions (good and bad) are combined into a single region and the
output of the neural network averaged over all the range gates in that region. Typically, this
results in the smaller of the two regions being misclassified. We believe that such cases
are relatively rare. One such case, from 1993 and shown in Figure 7, demonstrates a
situation where there is AP embedded inside a larger precipitation echo. The AP range
gates are correctly identified by the neural network but they are misclassified at the spatial
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Figure 6: The performance of the QCNN and the REC demonstrated on three of the in-
dependent test cases. (a) Reflectivity composite from KTLX on 16 June 1999 at 14:16
UTC has both ground clutter and good echoes. The range rings are 50 km apart. (b)
Result of quality control by the REC (c) Result of quality control by the QCNN. All the AP
has been removed while the good echo has not been touched. (d) Reflectivity compos-
ite from KHDX on 28 May 2005 at 10:34 UTC showing a hardware fault. (e) Result of
quality control by the REC (f) Result of quality control by the QCNN. All the data from this
problematic volume scan has been wiped out. (g) Reflectivity composite from KFDR on
16 July 2004 at 02:59 shows biological contaminants. (h) Result of quality control by the
REC (i) Result of quality control by the QCNN – the algorithm performance is poor in this
case.
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postprocessing stage. A multi-scale vector segmentation, as in (Lakshmanan et al. 2003),
based on both the reflectivity field and the identified precipitation confidence field could
help resolve such situations satisfactorily. We plan to implement such a segmentation
algorithm.

Figure 7 also illustrates another short-coming of the technique described in this pa-
per. If there is AP at lower elevation angles and precipitation echoes at higher elevation
angles over the same area, the desirable result would be to remove the AP at lower el-
evation scans, but retain the precipitation echoes aloft. However, because the technique
described in this paper uses all the elevations within a virtual volume scan to classify
range gates on a two-dimensional surface, the resulting classification is independent of
the elevation angle. Thus, all the range gates would either be removed (because of the
AP below) or retained (because of the precipitation aloft).

d. Multi-sensor QC

The radar-only quality-control technique described above, and whose results are shown
in Table 4 and Figure 6, performs reasonably well and is better than earlier attempts
described in the literature.

We have been monitoring a 1km resolution multi-radar mosaic of QC’ed radar data (Lak-
shmanan et al. 2006) from 130+ radars across the United States for nearly a year as of this
writing. This continuous monitoring led to the identification of some systemic errors in the
radar-only technique. Many of these errors occur at night in areas subject to “radar bloom”
(biological contamination in warm weather, as shown in Figure 6g) and when radars expe-
rience hardware faults or interference from neighboring radars that cause unanticipated
patterns in the data. When considering data from just one radar at a time, the incidence of
such errors may be acceptable. However, when merging data from multiple radars in real-
time, from 130 WSR-88Ds such as in Lakshmanan et al. (2006), the errors are additive –
at any point in time, one of these systemic errors is 130 times more likely. Therefore, the
quality of radar data feeding into multi-radar products has to be much better.

One way to potentially improve the quality of the reflectivity data is to use information
from other sensors (Pamment and Conway 1998). In real-time, we can compute the
difference:

T = Tsurface − Tcloudtop (3)

where the cloudtop temperature, Tcloudtop, is obtained from the 11µ GOES infrared channel
and the surface temperature, Tsurface, is obtained from an objective analysis of surface
observations. Ideally, this difference should be near zero if the satellite is sensing the
ground and greater than zero if the satellite is sensing clouds, in particular, high clouds.
In practice, we use a threshold of 10C. Unlike the visible channel, the IR channel is
available through out the day but has a poor temporal resolution and high latency (i.e,
arrives after significant delays) in real-time. Therefore, the satellite data are advected
using the clustering and Kalman filtering technique described in Lakshmanan et al. (2003)
to match the current time before the difference is computed.

If there is any overlap between a region of echo sensed by radar and clouds sensed
through the temperature difference, that entire region of echo is retained. If there is no
overlap, the entire region is deleted, as shown in Figure 8.

Although in this paper, we have shown this multi-sensor QC operating on radar data
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Figure 7: An instance where spatial postprocessing is detrimental. (a) A radar composite
from KLSX on 07 July 1993 at 04:09 UTC shows anomalous propagation (marked by
a polygon) embedded inside precipitation echoes. (b) The precipitation confidence field
from the neural network shows that the AP and precipation areas have been correctly
identified for the most part. The red areas are “good” echo. Note, however, the random
errors in classification in both the AP and precipitation areas (circled). (c) The result of
spatial postprocessing; since the precipitation area is much larger than the AP area, the
AP area is also identified as precipitation. Use of a vector segmentation algorithm may
help resolve situations like this. (d) The resulting QC’ed composite field has mis-identified
the AP region as precipitation.
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combined from multiple radars, the multi-sensor QC technique can be applied to single
radar data also (Lakshmanan and Valente 2004).

The tradeoffs of using such a multi-sensor QC technique are not yet completely known.
While sporadic errors left by the radar-only technique are corrected by the multi-sensor
component, the multi-sensor QC technique of the form discussed leaves a lot to be de-
sired. Satellite IR data are of poor resolution (approximately 4 km every 30 minutes); the
surface temperature data we use is even coarser. Many shallow storms and precipitation
areas, e.g: lake-effect snow, are completely missed by the satellite data. The advection
may be slightly wrong, leaving smaller cells unassociated with the clouds on satellite.
Thus, while the multi-sensor aspect can provide an assurance that clear-air returns are
removed, it can also remove many valid radar echoes. An examination of its performance
over a climatologically diverse data set is required.

An implementation of this quality control technique for WSR-88D data is available (free
for research and academic use) at http://www.wdssii.org/.

e. Research directions

We have focused on developing a single algorithm that could be used to perform quality
control on WSR-88D data from anywhere in the continental United States and in all sea-
sons. It is possible that a more targeted QC application (e.g, targeted to the warm season
in Florida) might work better because it would limit the search space for the optimization
procedure. On the other hand, there should be no reason to target a QC application by
the type of bad echoes expected. There is little that the end-user of two QC products,
one for AP/GC and the other for radar test patterns, can do other than to use a rule of
thumb to combine these into a single product. A formal optimization procedure should,
theoretically, do better at arriving at such a combined product.

It was pointed out in this paper that when combining radar data from multiple radars,
the errors are additive. Therefore, the quality-control procedure, while adequate for single-
radar products, needs to be further improved for multi-radar products. The use of satellite
and surface data in real-time was explored, but some limitations were observed. A multi-
sensor approach merits further study.

This research utilized only a selected set of training, validation and independent test
cases. In such a selection, the climatological probabilities of the various errors are lost. A
climatological study of all the WSR-88D radars in the continental United States, with the
actual probability of the various problems that a quality-control technique is expected to
handle may permit a better design of quality-control techniques. We believe that our tech-
nique of selected emphasis to balance out distributions and emphasize strong reflectivity
echoes is a better approach, but this is unproven.

f. Summary

This paper has presented a formal mechanism for choosing and combining various mea-
sures proposed in the literature, and introduced in this paper, to discriminate between pre-
cipitation and non-precipitating echoes in radar reflectivity data. This classification is done
on a region-by-region basis rather than range-gate by range-gate. It was demonstrated
that the resulting radar-only quality control mechanism outperforms the operational algo-
rithm on a set of independent test cases. The approach of this paper would be equally
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Figure 8: (a) Part of a radar image formed by combining QC’ed radar data from all the
WSR-88D radars in the continental United States at approximately 1 km x 1 km every 2
minutes. The detail shows Nevada (top-left of image) to the Texas panhandle (bottom-
right of image). (b) Two good echoes are marked by rectangles (in Nevada and Arizona).
One bad echo region is marked by a circle (in Nebraska, upper right). (c) Cloud cover
product formed by taking a difference of cloud-top temperature detected by satellite and
surface temperature from an objective analysis of surface observations. Notice that the
echo in Arizona has cloud-cover; the marked echoes in Nevada and Nebraska don’t. (d)
Applying the cloud cover field helps remove some bad echo in Nebraska while retaining
most of the good echo. However, good echo in Nevada has been removed because it was
not correlated with cold cloud tops in satellite IR data.
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applicable to data from a newer generation of radars or radars in different areas of the
world.
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