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Abstract

With the advent of real-time streaming data from various radar networks,
including most WSR-88Ds and several TDWRs, it is now possible to com-
bine data in real-time to form three-dimensional (3D) multiple-radar grids. We
describe a technique for taking the base radar data (reflectivity and radial ve-
locity), and derived products, from multiple radars and combining them in real-
time into a rapidly updating 3D merged grid. An estimate of that radar product
combined from all the different radars can be extracted from the 3D grid at any
time. This is accomplished through a formulation that accounts for the varying
radar beam geometry with range, vertical gaps between radar scans, lack of
time synchronization between radars, storm movement, varying beam resolu-
tions between different types of radars, beam blockage due to terrain, differing
radar calibration and inaccurate time stamps on radar data.

Techniques for merging scalar products like reflectivity as well as innova-
tive, real-time techniques for combining velocity and velocity-derived products
are demonstrated. Precomputation techniques that can be utilized to perform
the merging in real-time and derived products that can be computed from these
three-dimensional merger grids are described.
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1. Introduction

The Weather Surveillance Radar 1988 Doppler (WSR-88D) network now covers most of
the continental United States, and full-resolution base data from nearly all the WSR-88D
radars are compressed using block encoding (Burrows and Wheeler 1994) and transmit-
ted in real-time to interested users (Droegemeier et al. 2002). This makes it possible for
clients of this data stream to consider combining the information from multiple radars to
alleviate problems arising from radar geometry (cone of silence, beam spreading, beam
height, beam blockage, etc.). Greater accuracy in radar measurements can be achieved
by oversampling weather signatures using more than one radar.

In addition, data from several Terminal Doppler Weather Radar (TDWR) are being
transmitted in real-time. Since the TDWRs provide higher spatial resolution close to ur-
ban areas, it is advantageous to incorporate them into the merged grids as well. The
radar network resulting from the National Science Foundation-sponsored Center for the
Collaborative Adaptive Sensing of the Atmosphere (CASA) promises to provide data to fill
out the under-3 km umbrella of the NEXRAD network (Brotzge et al. 2005). Developing a
real-time heterogeneous radar data combination technique is essential to the utility of the
CASA network.

Further, with the advent of phased array radars with no set volume coverage patterns
and the possibility of highly adaptive scanning strategies, a real-time, three dimensional,
rapidly updating merger technique to place the scanned data in a earth-relative context is
extremely important for down stream applications of the data.

A combination of information from multiple radars has typically been attempted in two-
dimensions. For example, the National Weather Service creates a 10 km national re-
flectivity mosaic (Charba and Liang 2005). We, however, are interested in creating a 3D
combined grid because such a 3D grid would be suitable for creating severe weather al-
gorithm products and for determining the direction individual CASA radars need to point.

Spatial interpolation techniques to create 3D multiple-radar grids have been examined
by Trapp and Doswell (2000); Askelson et al. (2000). Zhang et al. (2005) consider spatial
interpolation techniques from the point of retaining, as much as possible, the underlying
storm structures evident in the single radar data. Specifically, they show that a technique
with the following characteristics suffices to create spatially smooth multi-radar 3D mo-
saics: (a) nearest-neighbor mapping in range and azimuth (b) linear vertical or bilinear
vertical-horizontal interpolation and (c) weighting individual range gates’ reflectivity val-
ues with an exponential function of distance. In this paper, we build upon those results by
describing:

1. How to combine the data using “virtual volumes” – a rapidly updating grid such that
the merged grid has a (theoretically) infinitesimal temporal resolution.

2. How to account for time asynchronicity between radars.

3. A technique of precomputations in order to keep the latency down to a fraction of a
second.

4. Extracting subdomain precomputations from larger precomputations in order to cre-
ate domains of merged radar products on demand.
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5. A real-time technique of combining not just radar reflectivity data, but also velocity
data.

6. The derivation of multiple-radar algorithm products.

a. Motivation

Many radar algorithms are currently written to work with data from a single radar. How-
ever, such algorithms for everything from estimating hail sizes to estimating precipitation
can perform much better if data from nearby radars and other sensors are considered. Us-
ing data from other radars would help mitigate radar geometry problems, achieve a much
better vertical resolution, attain much better spatial coverage and obtain data at faster
time steps. Figure 1 demonstrates a case where information on vertical structure was
unavailable from the closest radar, but where the use of data from adjacent radars filled in
that information. Using data from other sensors and numerical models would help provide
information about the near storm environment and temperature profiles. Considering the
numerous advantages of using all the available data in conjunction, and considering that
technology has evolved to the point where such data can be transmitted and effectively
used in real-time, there is little reason to consider single-radar Vertical Integrated Liquid
(VIL) or hail diagnosis.

b. Challenges in Merging Radar Data

One of the challenges with merging data from multiple radars is that radars within the
WSR-88D network are not synchronized. First, the clocks of the radars are not in sync.
This problem will be fixed in the next major upgrade to the radar signal processors. A
challenge faced by algorithms which integrate data from multiple radars is that the radar
scanning strategies are not the same. Thus, a radar in Nebraska might be in precipitation
mode, scanning 11 tilt angles every 5 minutes while the adjacent radar in Kansas might
be in clear-air mode scanning just 5 angles every 10 minutes. Of course, this is actually
beneficial. If the radar volume coverage patterns (VCPs) were synchronized, then we
would not be able to sample storms from multiple radars at different heights almost simul-
taneously (since, in general, the same storm will be at different distances from different
radars). Therefore, as opposed to the WSR-88D network radars being synchronized, it
would be beneficial if the non-synchronicity was actually planned, in the form of multi-
radar adaptive strategies.

Due to radar beam geometry, each range gate from each radar contributes to the final
grid value at multiple points within a 3D dynamic grid. Because some of the data might
be 10 minutes old, while other data might be only a few seconds old, a naive combination
of data will result in spatial errors. Therefore, the range gate data from the radars need to
be advected based on time-synchronization with the resulting 3D grid. The data need to
be moved to the position that the storm is anticipated to be in. This adjustment is different
for each point in the 3D grid. At any one point of the 3D grid, there could be multiple radar
estimates, from each of the different radars.

The typical objective analysis technique to create multi-radar mosaics has been to uti-
lize the latest complete volume of data from each of the radars – for example, the method
of Charba and Liang (2005). In areas of overlap, the contributions from the separate
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Figure 1: Using data from multiple, nearby radars can mitigate cone-of-silence and other
radar geometry issues. (a) Vertical slice through full volume of data from the KDYX radar
on 06 Feb. 2005. Note the cone of silence – this is information unavailable to applications
processing only KDYX data. (b) Lowest elevation scan from KDYX radar. (c) Equivalent
vertical slice through merged data from KDYX, KFDR, KLBB, KMAF, KSJT. Nearby radars
have filled in the cone-of-silence from KDYX. (d) Horizontal slice at 3 km above mean sea
level through merged data. 5
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Figure 2: Maximum expected size of hail in inches, calculated from reflectivity at various
temperature levels. The temperature levels were obtained from the Rapid Update Cycle
(RUC) analysis grid. The radar reflectivity was estimated from KFDR, KAMA, KLBB and
KFWS on 03 May 2003. (a) Without advection correction. (b) With advection correction.
When advection correction is applied, the cores of the storms sensed by the different
radars line up and the resulting merged products are less diffuse.

radars are weighted by the distance of the grid point from the radar because beams from
the closer radar suffer less beam spreading. There are two problems with this approach
that we address. First, because the elevation scans are repeated once every 5-6 min-
utes, the same area of the atmosphere could be sensed as much as 5 minutes apart by
different radars, leading to poor spatial location or smudging of the storm cells if blended
without regard for temporal differences. Figure 2 demonstrates the smudging that can
happen in multi-radar scans, and how accounting for storm movement can reduce such
smudging significantly. A second problem is the reliance on completed volume scans –
a periodicity of 5 minutes is sufficient for estimating precipitation but is not enough for
severe weather diagnosis and warning. For severe weather diagnosis and warning, spa-
tially accurate grids at a periodicity of at least once every 60 seconds are preferred by
forecasters (Adrianto et al. 2005). In the technique described in this paper, a constantly
updating grid is employed to get around the reliance on completed volume scans. Data
sensed at earlier times are advected to the time of the output grid so as to resolve the
storms better.

The rest of the paper is organized as follows. Section 2 describes the technique,
starting off with a description of “intelligent agents”, a formulation we use to address the
challenges described above. Using this technique to merge radar reflectivity, radial veloc-
ity and derived products is then described in Section 3. Section 4 describes extensions
to the basic technique to handle beam-blockage, quality control of input radar data, time
correction and optimizations for real-time use. Results and future applications of this work
are summarized in Section 5.
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2. Intelligent Agents

Our formulation of the problem of combining data from multiple radars, in the form of
intelligent agents, provides a way to address merging both scalar (such as reflectivity)
and vector (such as velocity/wind field) data.

Intelligent agents, sometimes called autonomous agents, are computational systems
that inhabit some complex dynamic environment, sense and act autonomously in this
environment, and by doing so realize a set of goals or tasks for which they are de-
signed (Maes 1995). Smith et al. (1994) concisely characterize intelligent agents as
peristent entities that are dedicated to specific purposes – the persistence requirement
differentiates agents from formulae ( Smith et al. (1994) use the term “subroutine”) since
formulae are not long-lived. The specific purpose characterization differentiates them
from more complex “multi-function” algorithms.

In the context of merging radar data from multiple, possibly heterogeneous radars,
each range gate of the radar serves as the impetus to the creation of one or more intel-
ligent agents. Each intelligent agent monitors the movement of the storm at the position
that it is currently in, and finds a place in the resulting grid based on time difference. Then,
at the next time instant, the range gate migrates to its new position in the grid. The agents
remove themselves when they expect to have been superseded. When new storm motion
estimates are available, the agent updates itself with the new motion vector. When multi-
ple agents all have an answer for a given point in the 3D grid, they collaborate to come up
with a single value following strategies specified by the end-user. These strategies may
correspond to typical objective-analysis weighting schemes or techniques more suitable
to the actual product being merged.

It should be clear that in the absence of time-correction via advection of older data,
the intelligent agent technique resolves directly to objective-analysis or multiple Doppler
techniques. Thus, the mathematical formulae in this paper will be presented in those,
more traditional, terms.

The use of intelligent agents creates a flexible, scalable system that is not bogged
down even by a highly “weather-active” domain (e.g:, a hurricane where most radar grid
points have significant power returns). This technique of using an intelligent agent for
each range gate with data from every radar in a given domain was proven to be robust
and scalable even during Hurricanes Frances and Ivan in Florida (September 2004). The
intelligent agents (about 1.3 million of them at one time) all collaborated flawlessly to
create the high-resolution mosaic of data, shown in Figure 3, of Hurricane Ivan from six
different radars in Florida. Since the hurricane is over water and quite far from the coast-
line, no individual radar could have captured as much of the hurricane as the merged data
have.

a. Agent Model

Each range gate of the radar with a valid value serves as the impetus to the creation of one
or more intelligent agents. The radar pointing azimuths, often termed “rays” or “radials”,
are considered objects within a radar volume that is constantly updating, and possibly
with no semblance of regularity. Not relying on the regularity of radials is necessary to
be able to combine data from phased array radars (McNellis et al. 2005) and adaptive
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Figure 3: Image of hurricane Ivan consisting of combined data from 6 WSR-88D radars
(KLCH, KLIX, KMOB, KTLH, KTBW and KBYX). Images were created from the latest
available WSR-88D data every 60 seconds (at approximately 1 km x 1 km x 1 km resolu-
tion).
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scanning strategies (Brotzge et al. 2005).
When an agent is created, it extracts some information from the underlying radial: (a)

its coordinates in the radar-centric spherical coordinate system (range, azimuth, elevation
angle) (b) the radial start time (c) the radar the observation came from. All these are
typically readily available in the radar data regardless of the type of radar or the presence
or absence of “volume coverage patterns.” The agent’s coordinates in the earth-centric
latitude-longitude-height coordinate system of the resulting 3D grid have to be computed,
however. The agents obtain these values following the 4/3 effective earth radius model
of Doviak and Zrnic (1993) (assuming standard beam propagation).

For a grid point in the resulting 3D grid (“voxel”) at latitude αg, longitude βg and at a
height hg above mean-sea-level, the range gate that fills it, under standard atmospheric
conditions, is the range gate that is a distance r from the radar (located at (αr,βr,hr) in
3D space) on a radial at an angle a from due-north and on a scan tilted e to the earth’s
surface where a is given by:

a = sin−1(sin(π/2− αg) sin(βg − βr)/ sin(s/R)) (1)

where R is the radius of the earth and s is the great-circle distance, given by (Beyer 1987):

s = R cos−1(cos(π/2− αr) cos(π/2− αg)+

sin(π/2− αr) sin(π/2− αg) cos(βg − βr))
(2)

the elevation angle e is given by (Doviak and Zrnic 1993):

e = tan−1
cos(s/IR)− IR

IR+hg−hr

sin(s/IR)
(3)

where I is the index of refraction, which under the same standard atmospheric conditions
may be assumed to be 4/3 (Doviak and Zrnic 1993), and the range r is given by:

r = sin(s/IR)(IR + hg − hr)/ cos(e) (4)

Since the sin−1 function has a range of [−π, π], the azimuth, a, is mapped to the correct
quadrant ([0, 2π]) by considering the signs of αg − αr and βg − βr. The voxel at αg, βg, hg

can be affected by any range gate that includes (a,r,e).
An agent’s life cycle depends on the radar scan. If the radar does not change its

volume coverage pattern (VCP), an agent can expect to be replaced Ttot + Ti + Tlat later,
where Ttot is the expected length of the volume scan, Ti the time taken to collect the scan
that the agent belongs to and Tlat the latency in arrival of the scan after it’s been collected.
In practice, Tlat is estimated to be on the same order as Ti as otherwise, it would not be
possible to keep up with the data stream. At the end of its life cycle, the agent destroys
itself. The time of the latest input radar data is used as the current time. If the radar
volume coverage pattern changes, there will be redundant agents if the periodicity of the
VCPs decreases (since the older agents will be around a tad longer). On the other hand,
if the periodicity lengthens, there will be a short interval of time with no agents. Because
VCPs are set up such that periodicity decreases with the onset of weather and lengthens
when weather moves away, there is no problem as long as the technique can reliably deal
with redundant agents from the same radar. Redundant agents from the same radar can
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be dealt with using a time-weighting mechanism. By explicitly building in an allowance for
redundant agents, radars with non-standard scanning strategies such as a phased array
radar can oversample certain regions temporally and sense other regions less often.

Whenever an output 3D grid is desired, all the existing agents collaborate to create the
3D grid. Since heterogeneous radar networks are typically not synchronized, the agents
will have to account for time differences. Naively combining all the data at a particular
grid location in the latitude-longitude-height space will lead to older data from one radar
being combined with newer data from another radar. This will lead to problems in the
initiation and decay phases of storms resulting in severe problems in the case of fast-
moving storms. The agents, therefore, move to where they expect to be at the time of the
grid. For example, an agent corresponding to a radar scan t seconds ago would move to
x1, y1 where:

x1 = x + uxy ∗ t
y1 = y + vxy ∗ t

(5)

where x, y are the coordinates obtained from the raw azimuth-range-elevation values and
uxy, vxy are horizontal motion vectors at x, y (scaled to the units of the grid). Because
of the difficulty of obtaining a vertical motion estimate, the vertical motion is assumed to
be zero. The motion estimate may be obtained either from a numerical model or from a
radar-based tracking technique such as Lakshmanan et al. (2003b). We use the latter in
the results reported in this paper.

b. Virtual Volume

Whenever a new elevation scan is received from any of the radars contributing to the
3D grid, a set of agents is created. The elevation scan radial data are scale-filtered to
fit the resolution of the target 3D grid. For example, if the radial data are at 0.25 km
resolution but the 3D grid is at a 1 km resolution, a moving average of four gates is used
to yield the effective elevation scan at the desired scale. Instead of creating an agent
corresponding to each range gate with valid values, we invert the problem and create an
agent for each voxel in the 3D latitude-longitude-height grid that each such range gate
impacts. The influence of a range gate from the center of the range gate extends to half
the beamwidth in the azimuthal direction and half the gate width in the range direction.
This is a nearest-neighbor analysis in the azimuth and range directions. In the elevation
direction, the influence of this observation is given by δe where

δe = exp(α3ln(0.005))
α = e−θi

|θi±1−θi|∨bi

(6)

α is the angular separation of the voxel from the center of the beam of an elevation scan
(at elevation e) as a fraction either of the angular distance to the next higher or lower beam
or the beamwidth. The ∨ is a maximum operation, bi the beamwidth of the elevation scan
and θi the elevation angle of its center. This function, shown in Figure 4, is motivated
by the fact that it is 1 at the center of the beam, goes to 0.5 at half-beamwidth and falls
to below 0.01 at the beamwidth (beyond which the influence of the range gate can be
disregarded). It can be seen that where the elevation weight δe is less than 0.5, the voxel
is outside the effective beamwidth of the radial. Points within the effective beamwidth are
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Figure 4: Weighting function for interpolation between the centers of radar beams. α is
the fraction of the distance to the next higher or lower beam.
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Figure 5: Interpolation in the spherical coordinate system mitigates bright-band effects in
this stratiform event. The data are from KDYX, KFDR, KLBB, KMAF and KSJT on 06 Feb.
2005.

weighted more than they would be in a linear weighting scheme. The direction of the
weighting is neither vertical nor horizontal, but tangential to the direction of the beam.

It should be noted that this interpolation is in the spherical coordinate system, in a
direction orthogonal to the range-azimuth plane. Zhang et al. (2005) interpolate either in
the vertical or in both the vertical and horizontal directions (i.e. in the coordinate system of
the resulting 3D grid). Our technique is more efficient computationally, but could fail in the
presence of strong vertical gradients such as bright bands, stratiform rain or convective
anvils. Figure 5 demonstrates one case where spherical coordinate interpolation may
suffice, but closer examination of a larger number of cases is needed. The optimal method
for interpolation might be neither the spherical interpolation nor the vertical-horizontal
interpolation, but to interpolate in a direction normal to the gradient direction (in 3D space).
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3. Combining radar data

The methodology of performing objective analysis on radar reflectivity data is relatively
clear. In Section 2, we introduced a formulation of interpolating radar data on to a uniform
grid that can address problems that arise in being able to perform the required computa-
tions in real-time. In this section, we describe the application of the formulation described
above to combining radar reflectivity, radial velocity and derived products.

a. Combining scalar Data

All the intelligent agents that impact a particular voxel need to collaborate to determine
the value at that voxel. In the case of scalar data, if each intelligent agent is aware of
its influence weight, this reduces to determining a weighted average. The agent can
determine its weight simply as an exponentially declining function of its distance from the
radar. However, there could be multiple agents from the same radar that affect a voxel.
In the case of a radar like TDWR, there could be multiple scans at the same elevation
angle within a volume scan. In the case of voxels that do not lie within a beamwidth, there
may be two agents corresponding to the adjacent elevation scans that straddle this voxel.
Also, decaying or slowly moving storms often pile up agents into the same voxel due to
the resolution of the grid points. Using all these observations together, regardless of the
reason there are multiple agents from the same radar, should lead to a statistically more
valid estimate.

There are two broad strategies to resolve this problem of having multiple observations
(agents) from the same radar. One strategy is to devise a best estimate from each radar
and then combine these estimates into an estimate for all the radars. The other is to
combine all the agents regardless of the radar they come from. In the case of velocity
data, we use the former technique while in the case of scalar data, the source of the data
is ignored. However, to mitigate the problem of multiple, repeated elevation scans, the
data are weighted both by time and distance. The influence weight of an observation is
given by:

δ = δe ∗ exp(−(t2r2/β)) (7)

where: δe is the elevation angle weight (See Eq. 6); t is the time difference between the
time the agent was created (when the radar observation was made) and the time of the
grid; r is the range of the range gate from which this observation was extracted; β is a
constant of 17.36 sec2 km2, a number that was chosen through experimentation. Among
a range of factors that we tried, this value seemed to provide the smoothest transitions
while retaining much of the resolution of the original data.

The weighted sum of all the observations that impact a voxel is then assigned to that
voxel in the 3D grid. This grid is used for subsequent severe weather product computa-
tions.

b. Combining velocity data

Unlike the methodology of combining scalar data, the methodology of combining velocity
data in real-time is not clear. Traditional multi-Doppler wind field retrieval is computa-
tionally intractable, because of its reliance on numerical convergence. In this paper, we
present three potential solutions to this problem: (a) of computing an “inverse” Velocity

13



Azimuth Display (VAD) (b) of performing a multi-Doppler analysis, with certain approxi-
mations in order to keep it tractable (c) of forgoing the wind-field retrieval altogether, but
merging shear, a scalar field derived from the velocity data. All three of the above tech-
niques are applied after dealiasing the velocity data. For both the WSR-88D and TDWR
data, we apply the operational WSR-88D dealiasing algorithm. The intelligent agents for
combining velocity data are created in the same manner as in the case of combining
scalar data, but their collaborative technique is not an objective analysis one.

The multi-Doppler technique is based on the over-determined dual-Doppler technique
of Kessinger et al. (1987). The terminal velocity was estimated from the equivalent radar
reflectivity factor (Foote and duToit 1969). We initially attempted a full 3D version of the
multi-Doppler technique, because severe storms do contain regions of strong vertical mo-
tion, and it would be advantageous to estimate the full 3D wind field. Unfortunately, test
results for the full 3D technique were unsatisfactory. The vertical velocities in that tech-
nique, computed via the mass continuity equation, turned out to be numerically unstable
and propagated errors into the horizontal wind fields. Instead of abandoning the pro-
cess entirely, we decided to try a simplified version of the technique, which assumes that
w = 0. Despite the fact that this assumption of w = 0 will not be valid for some regions of
severe storms, initial test results for this 2D version of the technique were promising (Witt
et al. 2005). Test results for the 2D version of the technique on two severe weather cases
showed very good agreement between the calculated horizontal wind field and corre-
sponding radial velocity data. The 2D wind field also closely matched what conceptual
models of the air flow in severe storms would suggest.

An example of merging reflectivity and velocity data from two heterogeneous radars –
KTLX, a WSR-88D, and OKC, the Oklahoma City TDWR – is shown in Figure 6. A single
horizontal level, at 1.5 km above mean sea level, is shown for the merged products. It
should be noted that the reflectivity images from the two radars, KTLX and OKC, are
different because the KTLX scan is 5 minutes older than the OKC one and the storm
has moved in the time interval. The merged radar grid does have the storm in the right
location at the reference time. Note also that the wind field retrieval has correctly identified
the rotation signature.

Since the vertical motion computed from an over-determined dual-Doppler technique
is not useful, we sought to examine if a more direct way of computing 2D horizontal wind
fields from the radar data was feasible. The Velocity Azimuth Display (VAD) technique
may be used to estimate the U and V wind components from the radial velocity observa-
tions using a discrete Fourier transform (Lhermitte and Atlas 1961; Browning and Wexler
1968; Rabin and Zrnic 1980). The VAD technique uses a least squares approximation
to calculate the first harmonic from the radial velocity observations at different azimuths
as observed from the radar location. The ”inverse” VAD technique similarly uses a least
squares solution to determine the 2D wind components at a point in space from the radial
velocity observations from different azimuths (i.e. as observed from different radars).

The radial velocity observed from the ith radar, vi, is dependent on the wind compo-
nents uo, vo and the observing angles φi of the radars:

Vn×1 = Pn×2[uovo]
T (8)

where:
Vn×1 = [v1v2v3...vn]T (9)
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Figure 6: A multi-Doppler wind field retrieval is shown superimposed on data from two
component radars – KTLX which is a WSR-88D and OKC which is a TDWR. (a) Reflec-
tivity from OKC on 08 May, 2003 at 22:35 UTC (b) Velocity from OKC (c) Reflectivity from
KTLX. The data from KTLX is from a time 4 minutes earlier than that of the OKC radar.
(d) Velocity from KTLX (e) Merged reflectivity and wind field at 1.5 km above mean sea
level. The range rings from the radars are 5 km apart.
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and Pn×2 is given by: 
sinφ1 cosφ1

sinφ2 cosφ2

...
sinφn cosφn

 (10)

If one has the radial velocity observations and the azimuth of the observations, a least
squares approximation of the wind components may be estimated using a least-squares
formulation as:

[uovo]
T = (P T

n×2Pn×2)
−1(P T

n×2Vn×1) (11)
The inverse VAD technique is viable as long as there are some radial velocity obser-

vations from nearly orthogonal angles.
In Figure 7, we demonstrate the technique on a simulation of three CASA radars. The

radial velocity data were created from a network of simulated radars observing the numer-
ical simulation (Biggerstaff and May 2005) of a tornadic storm. The inverse-VAD wind field
technique was used to retrieve the 2D wind field from the Doppler velocity corresponding
to the three simulated radars. The circulation signature is clearly identifiable in the wind
vector plot and correlates with the location of the shear signature in the radial velocity
data.

While it is useful to be able to perform multi-Doppler velocity analysis or inverse-VAD
analysis in real-time to retrieve wind fields, the applicability of such a processing is limited
to radars that are somewhat proximate to each other, and situated such that the radars’
viewing angles are nearly orthogonal to each other.

If we were to consider the WSR-88D network alone, such situations are rare and
made more so by the fact that unlike reflectivity data where the surveillance scans go out
to 460 km, velocity data go out only to about 230 km. Thus, there are few places where
such analysis may be performed. In this paper, we suggested the use of TDWR radars
in addition to the WSR-88D network to increase areas of overlap and showed that the
results were promising, at least for horizontal wind vectors. However, the combination
of data from radars of different wavelengths requires further study. We demonstrated
the merging of data from a S-band radar and a C-band radar in this paper, but in that
particular instance, there was no noticeable attenuation in the C-band data. Besides,
even in the presence of attenuation in reflectivity, velocity data might still be usable. As
CASA radars (where there will be considerable overlap between the radars in the network)
are deployed more widely, the real-time multi-Doppler analysis methods described here
will become more practical.

Because of the limitations of merging velocity data to retrieve wind fields, many re-
searchers, Liou (2002) for example, have examined the use of single-Doppler velocity
retrieval methods. It is possible that a merger of single-radar retrieved wind fields may
prove beneficial. It is also likely that applying single-Doppler velocity retrieval methods to
data from a spatially distributed set of radars might yield robust estimates of wind fields.
We have limited ourselves, in this paper, to describing multi-radar retrievals of wind fields
that can be performed in real-time using well-understood techniques.

Traditional methods of calculating vorticity and divergence from Doppler radial velocity
data can yield unreliable results. We use a two-dimensional, local, linear least squares
(LLSD) method to minimize the large variances in rotational and divergent shear cal-
culations (Smith and Elmore 2004). Besides creating greater confidence in the value
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Figure 7: An inverse-VAD wind field retrieval is shown superimposed on data from the
component radars. Top to bottom, reflectivity and velocity from a simulated CASA radar
east, west and north of the area of interest. The range rings are at 5 km intervals. Note
that the windfield retrieved using the inverse VAD technique has captured the thunder-
storm’s rotation.
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of intensity of meteorological features that are sampled, the LLSD method for calculating
shear values has several other advantages. The LLSD removes many of the radar depen-
dencies involved in the detection of rotation and radial divergence (or radial convergence)
signatures. Thus, the azimuthal shear that results from the LLSD is a scalar quantity that
can be combined using the same technique as used for radar reflectivity as shown in
Figure 8.

c. Derived Products

In addition to merging reflectivity and velocity data from individual radars into a multi-radar
grid, it is possible to apply the same method of merging reflectivity data to any scalar field
derived from the radar moment data. When doing so, it is essential to justify the reason
for combining derived products instead of deriving the product from the combination of
moment data since the latter is more efficient computationally.

Shear is a scalar quantity that needs to be computed in a radar-centric coordinate
system, since it is computed on Doppler velocity data taking the direction of the radial
beam into account. Therefore, it is necessary to compute the shear on data from individ-
ual radars and then combine them. Having computed the shear, we can accumulate the
shear values at a certain range-gate over a time interval (typically 2-6 hours), and then
merge the maximum value over that time period from individual radars. The strategy of
blending such a maximum value from multiple radars is to take the value whose magni-
tude (disregarding the sign) is maximum. Such a ”rotation track field” (shown in Figure 9)
is useful for conducting after-storm damage surveys.

Once a 3D merged grid of radar reflectivity is obtained, it is possible to run many se-
vere weather algorithms on this grid. For example, a multi-radar vertical composite prod-
uct is shown in Figure 3. The Vertical Integrated Liquid (VIL) was introduced in Greene
and Clark (1972) using data from a single radar. A multi-radar VIL product is shown in
Figure 10. VIL estimated from storm cells identified from multiple radars is a more ro-
bust estimate than VIL estimated using just one radar (Stumpf et al. 2004). Figure 11
demonstrates that the multi-radar VIL is more long-lived and more robust.

Three-dimensional grids of reflectivity are created at constant altitudes above mean
sea level. By integrating numerical model data, it is possible to obtain an estimate of
isotherm heights. Thus, it is possible to compute the reflectivity value from multiple radars
and interpolate it to points not on a constant altitude plane, but on a constant temperature
level. This information, updated every 60 seconds in real-time, is valuable for forecasting
hail and lightning (Stumpf et al. 2005). The inputs for a lightning forecasting application
that makes use of this data are shown in Figure 12).

The technique to map reflectivity levels to constant temperature altitudes is used to
transform the technique of the Hail Detection Algorithm (HDA; Witt et al. (1998)) from
a cell-based technique to a gridded field. A quantity known as the Severe Hail Index
(SHI) vertically integrates reflectivity data with height in a fashion similar to VIL. However,
the integration is weighted based on the altitudes of several temperature levels. In a
cell-based technique, this is done using the maximum dBZ values for the 2D cell feature
detected at each elevation scan. For a grid-based technique, the dBZ values at each
vertical level in the 3D grid are used, and compared to the constant temperature altitudes.
From SHI we compute Probability of Severe Hail (POSH) and Maximum Expected Hail
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Figure 8: (a) Vertical slice through azimuth shear computed from a volume of data from
the KLBB radar on 03 May 2003. (b) Azimuthal shear computed from a single elevation
scan. (c) Vertical slice through multi-radar merged azimuthal shear from KFDR, KAMA,
KLBB and KFWS. (d) 6 km horizontal slice through multi-radar data.
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Figure 9: A rotation track field created by merging the maximum observed shear over
time from single radars. The overlaid thin lines indicate the paths observed in a post-
event damage survey. Note that the computed path of high shear corresponds nicely with
the damage observed. Data from 03 May 1999 in the Oklahoma City area are shown.
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Figure 10: Multi-radar Vertical Integrated Liquid product at a high-resolution spatial (ap-
proximately 1 km x 1 km) and temporal (60 second update) resolution from the latest
reflectivity data from four radars – KFDR, KAMA, KLBB and KFWS on 03 May 2003.

Size (MEHS) values, also plotted on a grid (See Figure 2). Having hail size estimates on
a geospatial grid allows warning forecasters to understand precisely where the largest hail
is falling. These grids can also be compared across a time interval to map the swathes
of the largest hail or estimate the hail damage by combining hail size and duration of hail
fall. These hail swathes can later be used to enhance warning verification. They can also
be used to provide 2D aerial locations of hail damage to first responders in emergency
management and in the insurance industry.

3D reflectivity grids can also used to identify and track severe storm cells, and to trend
their attributes. This is presently done using two techniques. The first is a method similar
to that developed for the Storm Cell Identification and Tracking (SCIT) algorithm, that uses
a simple clustering method to extract cells of a given area and vertical extent (Johnson
et al. 1998). Another technique is to compute the motion estimate directly from derived
products on the 3D grid following Lakshmanan et al. (2003b). For example, either the
multi-radar VIL or the multi-radar reflectivity vertical composite may be used as the input
frames to the motion estimation technique. A K-Means clustering technique is used to
identify components in these fields.

Once the storms have been identified from the images, these storms are used as a
template and the movement that minimizes the absolute-error between two frames is com-
puted. Typically, frames 10 or 15 minutes apart are chosen. Given the motion estimates
for each of the regions in the image, the motion estimate at each pixel is determined
through interpolation. This motion estimate is for the pair of frames that were used in
the comparison. We do temporal smoothing of these estimates by running a Kalman
filter (Kalman 1960) at each pixel of the motion estimate. The Kalman estimator is built
around a constant acceleration model with the standard Kalman update equations (Brown
and Hwang 1997). This motion estimation technique is used as a source of uxy, vxy, the

21



Figure 11: VIL computed on cells detected from data blended from individual radars is
more robust than VIL computed on storms cells identified from a single radar. As the
storm approaches the radar, the single radar VIL drops since higher elevation data are
unavailable. The multi-radar product does not have that problem. Image courtesy Stumpf
et al. (2004).

22



a b

c d

Figure 12: (a) Current lightning density. (b) Reflectivity at height of -100C temperature,
used as input to the lightning prediction. (c) 30-minute lightning forecast. (d) Actual
lightning 30 minutes later.
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anticipated movement of the intelligent agent currently at x, y in the 3D grid (see Eq. 5).

4. Extensions to Method

While the basic technique of creating intelligent agents and combining them yields rea-
sonable results, we extended the basic technique by correcting for beam blockage from
individual radars, improving the quality of the input data, correcting for time differences
between the radars, and devising optimizations to enable the technique to be used in
real-time.

a. Corrections for Beam Blockage

A range gate from a radar elevation scan is assumed to not impact a voxel if it falls within
a beam-blockage umbrella due to terrain. Currently, for reasons that will become evident
in Section 4c, a standard atmospheric model with an effective 4/3 earth radius (Doviak
and Zrnic 1993) is assumed to determine which radar beams will be blocked by terrain
features. A terrain Digital Elevation Map (DEM) at the scale of the desired grid (approx-
imately 1km × 1km) was used for the results presented here, but the technique would
apply even if higher resolution terrain maps were used.

The assumptions for a beam being blocked follow very closely the technique of O’Bannon
(1997); Fulton et al. (1998). Interested readers should consult those papers for further in-
formation. For each point in the DEM, the azimuth, range and elevation angle of a thin
radar beam is computed following the standard beam-propagation assumptions and tol-
erances as given by O’Bannon (1997). Any thin beam above this elevation angle passes
above this terrain point unblocked. Other beams are assumed to be blocked by this el-
evation point. Every radial from the radar is then considered a numerical integrand of
all the thin beams that fall within its range of azimuths and elevations. The influence of
the individual thin beams follows the power density function of Doviak and Zrnic (1993).
Thus, a fraction of the beam that is blocked is known at each range gate. If this fraction
is greater than 0.5, the entire range gate is assumed to be blocked – the data from such
range gates are not used to create new intelligent agents. However, due to advection, it is
possible that a voxel that would be beam blocked might get a value due to the movement
of an agent created from a non-blocked range gate. Beam-blocked voxels can also get
filled in by data from other, nearby radars, leading to a more uniform spatial coverage
than what is possible using just one radar. Figure 13 demonstrates the filling of data from
adjacent radars to yield better spatial coverage when some parts of a radar domain are
beam-blocked.

Similar to the beam blockage correction, it should be possible to dynamically correct
for inaccurate clocks on individual radars and for heavy attenuation from individual radars.
Our current implementation does neither because of our initial focus on the WSR-88D
network. The inaccurate clocks on the WSR-88D network are to be fixed with automatic
time-correction software in the radar sites. WSR-88Ds, being S-band radars, do not at-
tenuate as severely as X-band radars. For C-band radars such as TDWR and X-band
radars such as those that will be used in the CASA network, an attenuation correction will
have to be put in place to avoid an under-reporting bias in the multiple radar grids.
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Figure 13: (a) Vertical slice through data from the KIWA (Phoenix) radar on 14 Aug. 2004.
(b) Elevation scan from the KIWA radar. Note the extensive beam blockage. (c) Vertical
slice through multi-radar data from KIWA, KEMX, KYUX, KFSX and KABX covering the
same domain. (d) 5 km horizontal slice through multi-radar data. Note that the entire
domain is filled in.
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b. Quality Control of Input Data

Weather radar data are subject to many contaminants, mainly due to non-precipitating
targets (such as insects and wind-borne particles) and due to anomalous propagation
(AP) or ground clutter. If the radar data are directly placed into the 3D merged grid, these
artifacts lower the quality of the gridded data. Hence, the radar velocity data need to
be dealiased and the radar reflectivity data need to be quality controlled. We used the
standard WSR-88D dealiasing algorithm to dealias the velocity data.

In radar reflectivity data, several local texture features and image processing steps
can be used to discriminate some types of contaminants (Kessinger et al. 2003). How-
ever, none of these features by themselves can discriminate between precipitating and
non-precipitating areas. A neural network is used to combine these features into a dis-
crimination function (Lakshmanan et al. 2003a). Figure 14 demonstrates that the neural
network is able to identify, and remove, echoes due to anamalous propagation while re-
taining echoes due to precipitation.

No current technique using only single radar data (ignoring polarimetric data) can
discriminate between shallow precipitation and spatially smooth clear-air return (Laksh-
manan and Valente 2004). The radar-only techniques also have problems removing some
biological targets, chaff and terrain-induced ground clutter far away from the radar. In ad-
dition to the radar-only quality control above, an additional stage of multi-sensor quality
control is applied. This uses satellite data and surface temperature data to remove clear-
air echoes. Figure 15 demonstrates that biological returns may be removed by using
such cloud cover information. For more details, the reader is directed to Lakshmanan and
Valente (2004).

The radar reflectivity elevation scans are quality controlled, either using the radar-
only quality-control technique described in Lakshmanan et al. (2003a) or using the multi-
sensor technique described in Lakshmanan and Valente (2004). It is these quality-controlled
reflectivity data that are presented to the agent framework for incorporation into the con-
stantly updating grid.

c. Precomputation

The coordinate system transformation to go from each voxel αg, βg, hg to the spherical
coordinate system (a,r,e) can be precomputed as long as we limit the input radars to be
nonmobile units (so that the radar position does not change). If the radar follows one of
a set number of volume coverage patterns, then the elevation scan can be determined
from e. If the elevation scans are indexed to always start at a specific azimuth and each
beam constrained to an exact beam width (WSR-88D scans are not), then a, r can also
be mapped to specific locations in the radar array. In fact, the presence of a volume cov-
erage pattern is not required to precompute the effect of data from an elevation angle –
all that’s required is that the radar operate only at a limited number of elevation angles,
perhaps in a range of [0o, 20o] in increments of 0.1o. Then, the voxels impacted by data
from an elevation scan can be computed beforehand and stored in permanent memory
(hard drive) for immediate recall whenever that elevation angle from that radar is received.
Intelligent agents can be then created, assigning to them the coordinates in both coordi-
nate systems at the time of creation. If the VCPs are known or if the radar operates only
at set elevations, it is possible to precompute the elevation weight δe. However, because
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Figure 14: Independent test cases for the Quality Control Neural Network (QCNN): (a) A
data case from KAMA with significant AP. The range rings are 50 km apart. (b) Edited
using the neural network – note that all the AP has been removed, but the storm cells
north west of the radar are retained. (c) Typical spring precipitation (d) Edited using the
neural network – note that even the storm cell almost directly overhead the radar has
been retained, but biological scatter has been removed.
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Figure 15: (a) Radar (KTLX) reflectivity composite showing effects of biological contami-
nation. (b) The cloud-cover field derived from satellite data and surface observations. (c)
The effect of the radar-only quality control neural network. (d) The effect of using both
the radar-only neural network and the cloud cover field. Note that the small cells to the
north-west of the radar are unaffected, but the biological targets to the south of the radar
are removed.

28



of the dependence on t, a time-delay variable, it is necessary to compute δ at the time of
grid creation. Similarly, the presence of t in the advection equations necessitates that the
movement of the agents to their new positions be dynamic and not precomputed.

These precomputations have to be performed for every possible elevation angle from
every radar that will be used as an input to the merged 3D grid. For a grid of approximately
800km × 800km and about 10 radars, a typical regional domain, the precomputation can
take up to 8 hours on a workstation with a 1.8GHz Intel Xeon processor, 2GB of random
access memory and a 512 MB cache (referred here on as simply Intel Xeon). Thus, it is
necessary to decide upon a regional domain well in advance of the storm event, or have
enough hardware available to process a large radar domain reflecting the threat 6-8 hours
in advance.

d. Extraction of subdomains

Naturally, determining the domain of interest 6-8 hours in advance is not a trivial task. Is it
possible to reuse precomputations? Because the coordinate system of the output 3D grid
is a rectilinear system (the αg, βg, hg are additive), we can precompute the transformation
of data from any radar in the country at every elevation angle possible onto a domain
the size of the entire continental United States (CONUS). The CONUS domain can be
created at the desired resolution. We currently use 0.01 degrees in latitude and longitude
and 1km in height, approximately 1km × 1km × 1km at mid-latitudes. Then, the coordi-
nates of the range gate in a subdomain of the CONUS domain can be computed from
its coordinates in the CONUS domain using the offsets of the corners. If the north-west
corner of the CONUS domain is αc, βc, hc and that of the desired subdomain is αs, βs, hs,
then the additive correction to the αg, βg, hg entries in the CONUS cache to yield correct
subdomain entries is:

δα = (αg − αc)/resα

δβ = (βc − βg)/resβ
(12)

where resα, resβ are the resolution of the 3D grid in the latitudinal and longitudinal direc-
tions. The only condition is that the above operations have to yield integers, since they will
be indexes into the CONUS domain arrays. Thus, the limitation is that subdomains have
to be defined at 0.01 degree/1 km increments. Computation of the CONUS domain takes
about 120 hours on a dual-processor workstation and requires 77GB of disk space. How-
ever, this needs to be done only once and can be farmed out to a bank of such machines
to cut down the computation time. With this precomputed CONUS domain, we gain the
ability to quickly switch domains. See Levit et al. (2004) for how this capability is used to
get real-time access to merged 3D radar data from anywhere in the country using a single
workstation.

e. Time Correction

Motion estimates obtained from the technique described in Lakshmanan et al. (2003b) are
used to correct for time differences between the sensing of the same storms by different
radars using Eq. 5. This dramatically improves the value of derived products computed
from the 3D grid because, by correcting the locations of the storms, the areas sensed by
different radars line up in space and time. Figure 2 demonstrates the significant difference
between an uncorrected image and a time-corrected one.
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The characteristics of the motion estimation technique impact the results in the merged
grid. If motion of a few storms is underestimated, then those storms will appear to jump
whenever newer data are obtained, as the intelligent agents correct their positions. Since
the motion estimation technique of Lakshmanan et al. (2003b) is biased toward estimating
the movement of larger storms correctly, smaller cells and cells with erratic movements
will tend to not provide smooth transitions. However, the transition in such cases will
typically still be less than the transition that would have resulted if no advection correction
had been applied.

Weighting individual observations by time (in addition to distance; see Eq. 7) can have
undesirable side effects if the radars are not calibrated identically. If one radar is “hotter”
than all the others, then in those time frames where data from that radar is the latest avail-
able, the merged image will appear hotter. This problem affects radar data from the WSR-
88D network because of large calibration differences between individual radars (Gourley
et al. 2003) and is most evident when viewing time sequences of merged radar data.

In the absence of time weighting, however, the merged data will be a biased estimate
in areas where the storms are exhibiting fast variations in intensity because older data are
still retained. The older data are advected to their correct positions, but no compensation
is made for potential changes in intensity since automated extraction of the growth/decay
of the storm was found to possess very little skill (Lakshmanan et al. 2003b). There-
fore, calibration differences still remain evident when looking at features that migrate from
the domain of one radar to the domain of another, especially when these features are
accumulated over time.

One solution to the problem when combining time weighting with calibration differ-
ences between radars is to retain time weighting but to apply calibration corrections to the
data from individual radars. We intend to implement such a calibration correction in future
research.

f. Timing

The time taken to read individual elevation scans, update the 3D grid by creating intelli-
gent agents and write the current state of the 3D grid periodically depends on a variety
of factors. We carried out a test where the individual elevation scans and the output grid
are both compressed (as will be the case in a networked environment, to conserve band-
width), so all these timing data reflect the time taken to uncompress while reading and
compress when writing. We carried out this test for a 650× 700× 18 regional domain with
convective activity in most parts of the region and using data from 3 WSR-88Ds. Different
tasks scale to either the domain size or the number of radars. These are marked along
with the timing information in Table 1. The test was carried out on the aforementioned
Intel Xeon workstation.

Table 1 can be used to determine the computing power needed for different domain
sizes and numbers of radars. On average, we require 0.5 seconds per elevation scan
and 2.75 seconds per million voxels. It should be noted that merging radar data using the
technique described in this paper is an “embarrassingly parallel” problem i.e., if multiple
machines are put to work on the problem, each machine can concentrate on a subdomain
and the output grids can be cheaply stitched together again. The subdomains do have to
partially overlap to take into account advection effects.
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Aspect CPU Time s Clock Time s Scaling

Read radar scan 0.012 ± 0.001 0.254 ± 0.023 One elevation scan

Update grid with scan 0.075 ± 0.007 1.28 ± 0.135 One elevation scan

Create 3D grid 0.594 ± 0.127 9.179 ± 2.056 8m voxels

Write 3D grid 1.257 ± 0.268 20.68 ± 4.62 8m voxels

Table 1: Timing statistics collected in real-time for reading radar data and creating 3D
merged grids of reflectivity.

Update interval Domain size Radars Domain resolution No. of machines

CONUS 1 minute 5000km× 3000km× 20km 130 1km× 1km× 1km 20

Regional 1 minute 800km× 800km× 20km 10 1km× 1km× 1km 1

CONUS 5 minute 5000km× 3000km× 20km 130 1km× 1km× 1km 4

Table 2: Estimated hardware requirements to implement this technique. The machine
referred to here is a 1.8 GHz Intel Xeon processor with 2 GB of RAM.

Using the information in Table 1, we can estimate the computational requirements to
create a 5000 × 3000 × 20 domain every 60 seconds in real-time using information from
130 WSR-88Ds. Let us estimate that we will receive a new elevation scan from each
of the radars every 30 seconds (in areas having significant weather, this will be around
20 seconds while in areas of little weather, the interval approaches 120 seconds). Thus,
we will have 260 elevation scans per minute to read and update, which will take about
130 wall-clock seconds on our single workstation. Since our 5000 × 3000 × 20 domain
contains 300 million voxels, creating and writing out the grid will take 1125 more seconds.
Our single workstation, if outfitted with enough computer memory, will be able to create
and write 3D merger grids for this domain in 1250 seconds. To maintain our update
interval of 60 seconds, we would require about 20 such workstations. The hardware
requirements for several scenarios are provided in Table 2. Levit et al. (2004) used the
regional configuration in their study.

5. Summary

In this paper, we described a technique based on an intelligent agent formulation for tak-
ing the base radar data (reflectivity and radial velocity), and derived products, from mul-
tiple radars and combining them in real-time into a rapidly updating 3D merged grid. We
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demonstrated that the intelligent formulation accounts for the varying radar beam geom-
etry with range, vertical gaps between radar scans, lack of time synchronization between
radars, storm movement, varying beam resolutions between different types of radars,
beam blockage due to terrain, differing radar calibration and inaccurate time stamps on
radar data.

The techniques described in this paper of merging moment data from individual radars
have been tested in real-time, and on archived data cases, in diverse storm regimes. They
have been tested on different types of radars as well. For example, Figure 3 shows the
technique operating in a hurricane event. Figure 13 shows the technique operating on
late-summer monsoon events in an area with terrain. Figures 2, 9 and 10 illustrate the
use of this technique in convective situations, while Figure 5 illustrates a stratiform one.
One of the radars in Figure 6 is a TDWR while the others are WSR-88Ds, while Figure 7
shows simulated CASA radars.

With the continuing improvements in computer processors, operating systems and
input/output performance, preliminary tests indicate that a 2-minute CONUS 3D merger
can be implemented using a single 3 GHz 64-bit processor with 8 GB of RAM. Thus, we
plan to start utilizing this technique to merge scalar fields, both reflectivity and derived
shear products, from all the WSR-88D radars in the Continental United States. We now
have the ability to ship the merged products in real-time to AWIPS/N-AWIPS workstations
at weather forecast offices and national centers. Since these workstations will be unable
to handle the data at its highest resolution and spatial extent, we may have to subsect
the data before shipping it to operational centers. The merged products created using the
technique described in this paper should be available for operational use by the time this
paper is in print.

We would also like to note that software implementing this technique of combining data
from multiple radars is freely available at http://www.wdssii.org/ for research and academic
use.
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