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Abstract

The Warning Decision Support System – Integrated Information (WDSS-II) is the second genera-

tion of a system of tools for the analysis, diagnosis and visualization of remotely sensed weather

data. WDSS-II provides a number of automated algorithms that operate on data from multiple

radars to provide information with a greater temporal resolution and better spatial coverage than

their currently operational counterparts. In this paper, we describe how the individual automated

algorithms that have been developed using the WDSS-II infrastructure together yield a forecast-

ing and analysis system, providing real-time products useful in severe weather nowcasting. The

purposes of the individual algorithms and their relationships to each other are described, as is the

method of dissemination of the created products.
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1. Introduction

The first version of the Warning Decision Support System (WDSS; Eilts et al. (1996)) was de-

veloped in the early 1990s and was based on data from individual radars. The tornado vortex

signature (Mitchell et al. 1998) and mesocyclone detection (Stumpf et al. 1998) algorithms that are

currently used in operations by the National Weather Service were first implemented, tested and

validated within the WDSS framework. To support university and other researchers, workstation

versions (called WATADS; NSSL (1996)) of these operational algorithms were distributed freely.

Since the time that we developed WDSS, there have been two major developments. Com-

puter networking and compression methods have improved to the point that data from individual

radars can be transmitted, in real-time, over the Internet to interested users. This project (called

CRAFT; Droegemeier et al. (2002)) has now made possible the development of new weather ap-

plications that treat the radars, not as stand-alone entities, but as part of a network of observing

platforms. In anticipation of this, we started developing, in 2000, the computing architecture

that would enable the development of such applications. Researchers who create new weather-

applications using this architecture would not need to be concerned with the underlying data man-

agement and networking protocols that would enable them to access real-time, high resolution data

from radars from anywhere in the country.

Rapid development of such multi-radar, multi-sensor applications requires a few capabilities.

One is the presence of a full-fledged data access application programming interface (API) that

enables access to data from various sensors. It has been recognized that it is necessary to provide

an API that enables rapid development of new meteorological applications. For example, the

Common Operations Development Environment (CODE; Stern et al. (2001)) is an API that aims

to shorten the application, development, testing and integration cycle of new hydrometeorological

2



algorithms into the WSR-88D. However, CODE as a development platform has a major limitation

in that it is defined by its target platform, the WSR-88D Open Radar Products Generator (ORPG).

Our aim was to define a research platform that would enable the rapid development of applications

based, not just on single radars but also on simultaneous access to multiple radars as well as non-

radar sensors.

The data access API needs to also expand easily to handle new data sources and protocols

with no changes required from the algorithm developer’s point of view. An important aspect of

application development is the visualization of intermediate products (for trouble-shooting) and

novel output products (for validation). The visualization program needs to be configurable to

enable the visualization of generic classes of products, so such intermediate and final products

can be visualized easily. The validation of newly devised products involves comparisons between

different techniques, and comparisons against ground truth. Statistical and geospatial tools are

necessary to enable such comparisons to be made. Finally, it is often necessary to test the utility of

new algorithms and products by verifying their use in real-world forecasting and decision-making

contexts. For easy deployment of newly developed applications in test beds, the data access API

needs to go seamlessly from archived data access to real-time data access.

The Warning Decision Support System – Integrated Information (WDSS-II) provides all these

capabilities – a common data access infrastructure, a suite of multisensor applications and an exten-

sible 4D visualization system – to application developers in an integrated manner. For example, all

applications are provided access to data ordered by time so that the transition from archived data

sets to a real-time dataset is seamless. To further enable easy portability and incorporation into

other research tools, all data produced are in self-describing, extensible formats (NetCDF; Jenter

and Signell (1992) and XML; Bray et al. (2000)).
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In Section 2, the single-radar severe weather applications that comprise the real-time system are

described while the multi-radar applications are described in Section 3. The results of operational

tests of these algorithms are summarized in Section 4.

It should be noted that although many forecasters and researchers use WDSS-II for post analy-

sis with archived data sets, and as a convenient substitute for the currently operational single-radar

applications that are part of the WSR-88D radar products generator, these aspects are outside the

scope of this paper. Rather this paper concentrates on the real-time, multi-radar applications in

part of WDSS-II and their utility to severe weather forecasting. The only single-radar applications

discussed are those whose products are utilized by the multi-radar applications.

2. Severe Weather Applications

Severe thunderstorms are thunderstorms that produce tornadoes, large hail or are accompanied

by high winds. The occurrence of lightning and floods are often of concern to a severe weather

forecaster as well. A decision support system that aids a severe weather forecaster needs to pro-

vide tools for the analysis and diagnosis of rotation, hail, wind speed, lightning and precipitation

intensity and accumulation.

The system, described in this section and the next, for creating these diagnostic products using

automated algorithms in real-time is shown in Figures 1 and 2. The ellipses in the diagram rep-

resent real-time applications and the filled rectangles represent diagnostic products available for

severe weather analysis and forecasting. Level-II refers to the high resolution Doppler data avail-

able from the WSR-88D network in real-time. Analysis grids of surface temperature are obtained

from the Rapid Update Model (RUC), although other sources of objectively analyzed data may

be used as well. Satellite information is obtained from the GOES satellites while lightning flash
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information is obtained from the National Lightning Detection Network (NLDN).

[Figure 1 about here.]

[Figure 2 about here.]

Many radar algorithms were initially devised to work with data from a single radar. For exam-

ple, all the algorithms currently operational in the WSR-88D system and the ORPG are designed

to be single-radar algorithms. However, such algorithms can attain their purpose (whether it be

estimating hail sizes or estimating precipitation) much better if data from nearby radars and other

sensors were considered. Using data from other radars would help mitigate radar geometry prob-

lems (See Figure 3), achieve a much better vertical resolution, attain a much better spatial coverage

(as shown in Figure 9) and obtain data at faster time steps. Using data from other sensors and nu-

merical models would help provide information about the near storm environment and temperature

profiles. Considering the numerous advantages to be had by using all the available data in conjunc-

tion, and considering that technology has evolved to the point where such data can be transmitted

and effectively used in real-time, there is little reason to consider Vertical Integrated Liquid (VIL)

or hail diagnosis algorithm output based on a single radar whenever there is overlapping radar

coverage available.

[Figure 3 about here.]

On the other hand, there are algorithms that need their computation to be done with single

radar data. An algorithm might need to operate on data from a single radar if its computation

requires data in the native, polar format. For example, the computation of shear from velocity data

requires knowledge of the relative position of the radar. The quality control of radar reflectivity

data requires knowledge of the range of every data value and the data available from the same radar
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at other elevation angles. Thus, quality control and shear computation are two algorithms that need

to operate on data from individual radars as opposed to operating on data optimally combined from

multiple radars.

a. Quality control neural network (QCNN)

Weather radar data is subject to many contaminants, mainly due to non-precipitating targets such

as insects and wind-borne particles, anomalous propagation (AP) and ground clutter. Although

weather forecasters can usually identify, and account for, the presence of such contamination, au-

tomated weather algorithms are affected drastically. These applications require that echoes in the

radar reflectivity moment correspond, broadly, to “weather”. Several local texture features and

image processing steps can be used to discriminate some of these types of contaminants. However,

none of these features by themselves can discriminate between precipitating and non-precipitating

areas. A neural network is used to combine these features into a discrimination function (Laksh-

manan et al. 2003a, 2005a).

Knowledge of the surface temperature at the radar site is useful to distinguish between summer-

time bloom and winter-time snow, so that information is extracted from the model analysis grids

(by “w2radarenv” in Figure 1) and presented to the quality control neural network (“w2qcnn” in

same figure). The performance of the quality control technique is demonstrated in Figure 4.

[Figure 4 about here.]
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b. Circulation strength estimation (w2circ)

Traditional methods of calculating rotational and divergent shears from Doppler radial velocity

data can give results that vary widely from the true value of shear for the meteorological feature

being sampled. Some factors that must be considered include noisy data, the azimuthal offset of

sample volumes from the center of the feature (Wood and Brown 1997), and the radar viewing an-

gle. One commonly used technique relies simply on the difference of the maximum and minimum

radial velocity within a rotation or divergence feature. This method is plagued with uncertainties

in the values of the shear estimates as well in locating the center of a shear feature. We use a

two-dimensional, local, linear least squares (LLSD) method to minimize the large variances in ro-

tational and divergent shear calculations (Smith and Elmore 2004). Benefits of using LLSD first

derivative (shear) estimates include higher tolerance of the noise typical of radial velocity data and

better adaptability to different spatial scales.

Besides creating greater confidence in the value of intensity of meteorological features that are

sampled, the LLSD method for calculating shear values has several other advantages. The LLSD

removes many of the radar dependencies involved in the detection of rotation and radial divergence

(or radial convergence) signatures. Thus, these derivatives of the radial velocity field may be

viewed in three-dimensional space or used as input to multi-sensor meteorological applications

that require more than one radar as input. Additionally, fields of these radial estimates of rotation

and divergence have specific signatures when boundaries or circulations are sampled. Figure 5

shows an example of the rotation LLSD component (”Azimuthal Shear”, shorted to “AzShear”

in Figure 1) accumulated over time to form the Rotation Tracks products (see right hand side of

Figure 2), and how it may be used to plot the path of a strong circulation signature.

[Figure 5 about here.]
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c. Near-storm environment (NSE) algorithm

The near-storm environment (NSE) algorithm analyzes mesoscale numerical model output and de-

rives a number of environmental parameters. These derived gridded data are used by a number of

other algorithms, particularly the hail diagnosis applications. As compared to rawinsonde informa-

tion used by the operational algorithms, the model initial analysis fields provide greater temporal

and spatial resolution of important environmental data for the multiple-sensor applications. For

example, hourly thermodynamic data (heights of 0oC and −20oC levels) are input into the cell-

based and grid-based hail diagnosis algorithms. This rapidly updating information can be used to

capture rapidly evolving thermodynamic fields or fields with large spatial gradients much better

than rawinsonde information. Presently, the NSE Algorithm takes input from the Rapid Update

Cycle (RUC) model analysis, although it is capable of processing data from other sources as well.

d. Lightning and Total Lightning Applications

Applications have been built to run on lightning data from the National Lightning Detection Net-

work (NLDN) and from the Oklahoma Lightning Mapping Array (LMA; Krehbiel et al. (2005)).

The NLDN data contain two-dimensional cloud-to-ground lightning flash location and time infor-

mation while the LMA data also encode the height and path information for all lightning strokes.

Because the LMA is, as of now, only a research network whose data is not available over the con-

tinental United States (CONUS), the only routinely available product over the CONUS is a 2D

density field.

An automated multi-sensor application uses isotherm levels from the RUC model, radar re-

flectivity data, and cloud-to-ground lightning data from the NLDN to predict the onset of cloud-
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to-ground lightning. The application, still under evaluation, uses a radial basis function (RBF) to

form a relation between past observed reflectivity at various isotherm levels to current cloud-to-

ground lightning activity. The RBF relationship matrix is constantly updated in real-time, and used

to predict the onset of cloud-to-ground activity in the future based on current observations of radar

reflectivity at various isotherm levels (Figure 6; Lakshmanan and Stumpf (2005)).

[Figure 6 about here.]

Lightning source data from the LMA is presented visually in several ways: as a dynamic three-

dimensional plot of source data, as a dynamic three-dimensional grid of source densities and as

various derived two-dimensional grids of source densities. The remapping of lightning source

data into lightning density grids is achieved using temporal averaging and spatial smoothing, as

shown in Figure 7. It is possible to run WDSS-II algorithms on this 3D lightning density grid.

In particular, it is possible to derive a vertically integrated field that indicates regions of deep

convection, regardless of altitude (See Figure 8).

[Figure 7 about here.]

[Figure 8 about here.]

3. Multi-radar/Multi-sensor Applications

WDSS-II includes several tools for remapping, rescaling, transforming coordinate systems and

combining data from multiple sensors and placing them onto a common earth-relative, constantly

updating grid. If these tools are used to combine the moments from the individual radars (reflec-

tivity and velocity), then algorithms may be run on the combined data. In many cases, algorithms
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that process data combined from multiple radars outperform their single-radar counterparts be-

cause radar geometry problems are mitigated in the combined grid. For example, the “cone of

silence” from one radar could get filled in from data from a farther radar, resulting in more uni-

form coverage throughout the domain. Similarly, interleaving elevation scans from adjacent radars

can lead to better vertical and temporal resolution. Incorporating data from other sensors and nu-

merical models is simplified because the radar data are now in an earth-relative coordinate system

(rather than the radar-centric polar coordinate system that single-radar applications work in).

Base radar data from multiple radars are combined in real-time into a rapidly updating 3D

merged grid and derived products are computed based on this 3D merged grid (Lakshmanan et al.

2005b). See Figure 9 for an example of such a product – the composite reflectivity computed from

the merged grid during the Hurricane Ivan event. Since the hurricane is over water and quite far

from the coast-line, no individual radar could have captured as much of the hurricane as is shown

in the merged data.

[Figure 9 about here.]

a. Cluster-based Motion Estimation

Because the individual radars will sense the same storm at different instants and because the storms

move and evolve in that interval, it is necessary to correct the data from the individual radars before

combining them. Each range gate from each radar is time-corrected and placed at a grid point in

the final 3D grid based on the time difference from the observation to the grid’s reference time.

The various observations at each grid point are combined following different strategies. Strategies

include taking the value whose magnitude is maximum (useful for combining fields such as shear)

and Cressman weighting (Cressman 1959).
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In order to perform time correction, the merger process requires an estimate of how far a storm

would have moved between the time of observation and the time of the merged grid. This estimate

is performed by first clustering the reflectivity values in a reflectivity composite field (Lakshmanan

et al. 2003b). These clusters (called segments in image processing) are used as a template and the

movement that minimizes the absolute-error between two frames is computed. Given the motion

estimates for each of the regions in the image, the motion estimate at each pixel is determined

through interpolation. This motion estimate is for the pair of frames that were used in the com-

parison. We do temporal smoothing of these estimates by running a Kalman filter (Kalman 1960)

at each pixel of the motion estimate, yielding a wind field over the entire domain at the resolution

of the reflectivity field. Forecasts can be made on fields other than the tracked field by advecting

them based on this estimated wind field. The forecast is done by first projecting data forward in

time to a spatial location given the motion estimate at their current location and the time that has

elapsed. Locations not filled by this forward projection are filled by interpolating using an inverse

square-distance metric of nearby filled locations.

To obtain an estimate of the wind field, albeit at lower resolution, where there are no storms

currently, a 0−6km mean wind from the RUC model is used as a background. (See the bottom left

corner of Figure 2). In the absence of model data, a distance-weighted average of storm motion is

used. The three steps of clustering, motion estimation and advection are shown in Figure 10.

[Figure 10 about here.]

b. Merger of Azimuthal Shear

In addition to merging radar reflectivity data from multiple radars, the same process can be used to

merge other information from single radars into a common multi-radar grid. Other scalar quantities
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derived from the moment data can be merged similarly. For example, one way of merging velocity

data is to merge the shear derived from the radar velocity moments. We use the LLSD algorithm

(See Section 2b) to compute azimuthal shear and rotational divergence on each single-radar field

and then run separate merger processes for these derived scalar fields (Figure 11).

[Figure 11 about here.]

Another derived scalar that can be similarly merged is the maximum observed shear from a

single radar at a certain point over a time interval (typically 2-6 hours). Such a ”rotation track

field” (See Figure 12 and bottom right of Figure 2) is useful for conducting post-storm damage

surveys.

[Figure 12 about here.]

c. Cloud cover quality control

While the single-radar quality control performed by the QCNN removes most of the artifacts from

radar data, it can fail when faced with echoes caused by moving targets such as chaff and birds.

Therefore, a second level of quality-control is often desirable. Based on the observation that the

infrared temperature of the 11-micron satellite channel is colder than the ground temperature when

there are storms (Lakshmanan et al. 2005a), we can remove pixels that remain in the reflectivity

fields in areas where the ground temperature is nearly the same temperature as the satellite field.

This is shown in the top-left corner of Figure 2. The resulting quality-controlled 3D reflectivity

grid is utilized to compute various severe weather diagnostic fields.
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d. VIL and MVR

Since its introduction by Greene and Clark (1972), Vertically Integrated Liquid (VIL) has been

used widely as a measure of severe weather potential, including in the WSR-88D system (Kitzmiller

et al. 1995). WSR-88D two-dimensional maps of maximum vertical-column reflectivity (MVR;

or “Composite Reflectivity”) and VIL suffer from several drawbacks: poor spatial resolution (2km

Cartesian grids), poor temporal resolution (5-minute updates) and radar geometry problems since

the algorithms operate on data from individual radars. Newer, “digital” ORPG products address

the spatial resolution problem by creating polar grids of these products, but the other two problems

remain. The problem of poor temporal resolution may be alleviated by creating these products in a

virtual volume fashion, i.e. updating the result with every elevation and computing the 3D products

with the latest available elevations instead of waiting for the end of a radar volume scan.

The issue of radar geometry is addressed by creating a new multi-radar product, merging radar

reflectivity data from multiple radars onto a 0.01o × 0.01o degree in latitude-longitude space (ap-

proximately 1kmx1km in the continental United States), and computing VIL and MVR on these

multi-radar grids. An example multi-radar MVR product is shown in Figure 9. An example multi-

radar VIL product is shown in Figure 13. Note that Figure 9 covers a much broader area than any

single radar could have and that radar geometry problems are minimized. However, because the

VIL depends on the height of the echoes and these heights can be different when estimated from

more than one radar (Maddox et al. 1999), the multi-radar VIL values for the same storm will be

different from the single-radar VIL values. Therefore, guidance based on single-radar values will

have to be adapted to a multi-radar product.

[Figure 13 about here.]

13



e. Multi-radar storm cell tracking

Multi-radar Storm Cell Identification and Tracking (MR-SCIT) is a centroid-based cell identifica-

tion and diagnosis algorithm, and is an extension of the WSR-88D SCIT algorithm (Johnson et al.

1998) to multiple radars. The input to MR-SCIT includes 2D features generated by single-radar

SCIT algorithms running on multiple radars with overlapping coverage (that is, they are able to

sample the same storm). The algorithm also incorporates near-storm environmental data.

The MR-SCIT algorithm combines the two-dimensional information from multiple radars and

uses these data sets to produce 3D detections. This allows for a more complete vertical sampling

of storms. Vertical and time association is performed at regular intervals with the last several

minutes of 2D features within a virtual volume enabling rapid updating of algorithm output and

time-synchronization of the multiple-radar data.

Information from multiple radars is used to detect and diagnose storm cells. Virtual volumes

of radar data containing the latest information from each radar are combined to produce vertical

cores representing storm cells. The vertical association technique clusters 2D features from each

of the radars within a 5 minute window into 3D storm features. Time-to-space correction based

on mean-wind and storm history is used to account for storm motion for the older 2D features.

The 2D detections are then associated vertically to form 3D storm cell detections. The multi-radar

reflectivity data from the 2D features used to construct these 3D storm cell detections are diagnosed

to give traditional cell-based attributes such as VIL. Cell-based hail diagnosis information such as

the probability of severe hail is also diagnosed using the combined multiple radar data, as well as

NSE data from mesoscale models. The cell-based storm and hail diagnoses are executed rapidly

at 1-minute intervals. Storm cells are also tracked in time, attribute data are available for trend

information, and 30-minute forecast positions are made.
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f. Hail diagnosis

The three-dimensional grids of reflectivity are created at constant altitudes above mean sea level.

By integrating numerical model data, it is possible to obtain an estimate of the spatial variation of

temperature by height. Thus, it is possible to compute the reflectivity value from multiple radars

and interpolate it to points not on a constant altitude plane, but on a constant temperature level. This

information, updated in real-time, is valuable for forecasting hail and lightning (See Section 2d and

Figure 6).

The technique to map reflectivity levels to constant temperature altitudes is used to transform

the technique of the Hail Detection Algorithm (HDA; Witt et al. (1998)) from a cell-based tech-

nique to a gridded field. A quantity known as the Severe Hail Index (SHI) vertically integrates

reflectivity data with height in a fashion similar to VIL. However, the integration is weighted based

on the altitudes of several temperature levels, as well as the reflectivity values. In a cell-based

technique, this is done using the maximum dBZ values for the 2D cell feature detected at each

elevation scan. For a grid-based technique, the dBZ values at each vertical level in the 3D grid

are used, and compared to the constant temperature altitudes. From SHI, we derive Probability

of Severe Hail (POSH) and Maximum Expected Hail Size (MEHS) values, also plotted on a grid.

Having hail size estimates on a geospatial grid allows warning forecasters to understand precisely

where the largest hail is falling. These grids can also be compared across a time interval, to map

the swaths of the largest hail or estimate the hail damage by combining hail size and duration of

hail fall (See Figure 14).

[Figure 14 about here.]
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g. Precipitation

Precipitation rates are estimated using a Marshall-Palmer Z-R relationship (Marshall and Palmer

1948): R = (Z/a)1/b where R is the rain-rate in mm/hr, Z the radar reflectivity in dB and a and

b are constants. We use the default settings recommended by Fulton et al. (1998): a = 200 and

b = 1.6 in areas of stratiform precipitation and a = 300 and b = 1.4 in areas of convective activity.

The presence or absence of hail as determined by the gridded hail diagnosis products is used to

discriminate between stratiform and convective precipitation.

To help prevent contamination from anamalous propagation and/or ground clutter, the single-

radar reflectivity data are quality controlled using the quality neural network before being merged

into a latitude-longitude-height grid from multiple radars. It is on this merged reflectivity grid that

precipitation is estimated. From this 3D grid, a 2D grid of reflectivity is estimated. In that 2D grid,

the reflectivity at every point is given by the reflected power closest to the ground in the 3D grid. To

help prevent bright-band or hail contamination, the 2D grid does not get assigned reflectivity values

if the closest value to the ground comes from a point higher than an estimated bright band height.

The bright-band height is assumed to lie within 1km of the 0oC temperature level. Thus, this

precipitation algorithm is simply a reimplementation of the WSR-88D rainfall algorithm of Fulton

et al. (1998) as a multi-radar product that makes use of numerical model information and better

quality-control techniques. It is expected that a more sophisticated and scientifically validated

precipitation estimation algorithm that uses polarimetric radar data, data from other sensors (rain

gages and satellite) and a wider variety of geographically and seasonally tuned Z-R relationships

will take its place.
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4. Results

During the spring of 2004, a proof-of-concept test of the WDSS-II system described in this paper

was conducted at the National Weather Service Forecast Office (NWSFO) in Norman, OK. The

goal of this proof-of-concept test was to determine which products may aid forecasters in making

more efficient tornado warning and severe thunderstorm warning decisions (Adrianto et al. 2005).

This was determined by surveying the forecasters after every event on the usefulness of WDSS-II

multi-sensor applications and display tools in the warning decision-making process.

During the proof-of-concept test, forecasters provided feedback on several items that indicate

the potential for an improved level of sevice should they be incorporated into NWS operational

systems:

• Multi-sensor applications provide information that is not available from a single source, and

fill in data voids that may not be apparent when evaluating a severe storm with a single radar.

• Applications that provide information about the spatial extent of severe weather (primarily

tornadoes and hail in this experiment) may provide the key to reducing the area of perceived

false alarms.

• Spatial data from the Rotation Track and Hail Track applications provide an extremely use-

ful verification tool, allowing forecasters to pinpoint areas to focus limited resources when

conducting verification phone calls and damage surveys.

• Four-dimensional analysis tools for base data and base data derivatives provide forecasters

important new tools for analyzing severe storms.

Forecaster feedback during this experiment was also used to improve the decision support system.

For example, observation of forecaster tasks and feedback from forecasters resulted in the rapid de-
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velopment of a new, dynamically-updating vertical cross-section tool in the WDSS-II display, that

is now being introduced into the National Weather Service’s operational AWIPS system (Stumpf

et al. 2005).

The shaded rectanges in Figures 1 and 2 represent products (some of which are single-radar

and others based on data from multiple radars). We do not disseminate the single-radar products

but the multi-radar research products described in this paper are being transferred to the forecast-

ing community and the public at large through three main mechanisms: to the National Weather

Service’s operational system, called AWIPS, to the National Centers of Environmental Prediction’s

operational system, called N-AWIPS, and to the public at large via the World Wide Web.

a. AWIPS

We run a special regional domain that covers the County Warning Areas of three forecast of-

fices – Tulsa, Norman and Fort Worth. On this domain, we create both reflectivity-based and

velocity-based multi-radar, multi-sensor products (See Figure 2). These products are converted

into a Display-2-Dimensions (D2D)-compatible netCDF format files in cylindrical (equal latitude-

longitude spacing) projection. These files are then compressed and shipped via Unidata’s Local

Data Manager (LDM) to the NWS’ Southern Region Headquarters from where they are shipped on

the AWIPS network to the three forecast offices. A forecaster using D2D accesses these products

using the D2D volume browser. It is possible to create subsets of the CONUS products for the

various regions, convert them into the AWIPS netcdf format and make them available in a simi-

lar manner (via the various regional headquarters) for interested forecast offices across the United

States.
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b. N-AWIPS

One of our purposes in building national-scale severe weather diagnostic products is to demonstrate

the utility of high-resolution, complete coverage to the NWS’ National Centers for Environmental

Prediction (NCEP). The primary display system at the Storm Prediction Center (SPC) is N-AWIPS,

which reads gridded files in GEMPAK format. Since N-AWIPS does support the conversion of

GRIB2 formatted files to GEMPAK, we distribute the products in the more common GRIB2 format

to NCEP. N-AWIPS, however, imposes severe restrictions on the size of grids (750,000 grid points).

The CONUS 1km products are approximately 4000 x 3000 i.e. 12,000,0000 points or nearly 16

times the maximum size acceptable by N-AWIPS. We have successfully subsected the CONUS-

wide grids into smaller grids at the full resolution and displayed them with N-AWIPS. We envision

that a forecaster will choose the sub-grids currently of interest and load only those grids in real-

time.

c. World Wide Web

We distribute the multi-radar, multi-sensor products on the Internet in two ways: as static images

and as GeoTiff images. The static images are created by the WDSS-II display which creates

offscreen snapshots of the images, with the appropriate map backgrounds. We then automatically

mirror these images onto a public webserver.

We also convert our netCDF products into geo-referenced images (GeoTiff). These GeoTiff

images can be easily incorporated into most Geographic Information Systems (GIS) including

freely available GIS such as Google Earth (Smith and Lakshmanan 2006). We provide on our

website XML metadata that enables Google Earth to dynamically request updated weather data
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and overlay the weather data on top of satellite land imagery or other GIS information.

Both the static images and the Google Earth imagery can be accessed in real-time from

http://wdssii.nssl.noaa.gov/

5. Summary

The individual automated algorithms that have been developed using the WDSS-II infrastructure

together yield a forecasting and analysis system, providing real-time products useful in severe

weather nowcasting. It was demonstrated that automated algorithms that operate on data from

multiple radars can provide information with greater temporal resolution and better spatial cov-

erage than their currently operational single-radar counterparts. These applications when used

together yield real-time products that can be incorporated into a forecasting and analysis system

for severe weather hazards. The products from the system of algorithms computed from remotely

sensed weather data covering the Continental United States are disseminated to users in select

National Weather Service offices, the Storm Prediction Center and the public at large.
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Figure 1: Part 1 of the data flow in a system set up to create 2D and 3D products at a 1-km
resolution over the continental United States. The first level of applications (such as ldm2netcdf
and ltgIngest) are simply data ingest applications. The other applications provide meteorological
products derived from a single source. Applications are shown in ellipses while products are shown
in rectangles.



Figure 2: Part 2 of the data flow (See Figure 1). This diagram shows the creation of 3D and derived
2D products that cover the entire spatial domain.
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Figure 3: Using data from multiple, nearby radars can mitigate cone-of-silence and other radar
geometry issues. (a) Vertical slice through full volume of data from the KDYX radar on Feb. 6,
2005. Because this is observed data, data between elevation scans is not interpolated. Note the
cone of silence (unsampled area above the radar’s highest elevation angle) – this is information
unavailable to applications processing only KDYX data. (b) Lowest elevation scan from KDYX
radar. (c) Equivalent vertical slice through merged data from KDYX, KFDR, KLBB, KMAF,
KSJT. Nearby radars have filled in the cone-of-silence from KDYX. This vertical slice has been
interpolated between layers since the merged grid is an analysis grid. (d) Horizontal slice at 3km
above mean sea level through merged data.
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Figure 4: (a) A high-resolution nationwide composite of the raw Level-II reflectivity data. (b) A
high-resolution nationwide composite of the QC’ed Level-II reflectivity data – note that the radar
artifacts and clutter around the radars have been removed.



Figure 5: Insets (c) and (d) show conventional displays of reflectivity and velocity data available
from Doppler weather radar. The image in (a) is a depiction of shear within a ”mini-supercell”
storm that is computed from the velocity data shown in (d). The dark spots indicate locations with
high shear. A slow northward movement of the high-shear areas with time is depicted as ”rotation
tracks” in (b). The graphic in (b) summarizes an hour of velocity data into information a human
decision maker can use immediately. Image courtesy Scharfenberg et al. (2004).
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Figure 6: (a) Current lightning flash density. (b) Reflectivity at the -10oC level, used as input to
the lightning prediction algorithm. (c) 30-minute lightning forecast. (d) Lightning flash density 30
minutes later.
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Figure 7: (a) A horizontal slice at 8 km above mean sea level of time-averaged and spatially
smoothed lightning source density. (b) A vertical slice of time-averaged and spatially smoothed
lightning source densities. In both cases, the spatial average was a Cressman filter with a 3-km
radius of influence while the time average was computed using a moving time window of 5 minutes.



Figure 8: Vertically integrated LMA (”VILMA”) image shows regions of convection regardless of
altitude.



Figure 9: Top: Image of hurricane Ivan consisting of combined data from 6 WSR-88D radars
(KLCH, KLIX, KMOB, KTLH, KTBW and KBYX). Images were created from the latest avail-
able WSR-88D data every 60 seconds (at 1km x 1km x 1km resolution). Bottom: Data from the
Tallahassee radar (KTLH) – note the far poorer coverage extent.
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Figure 10: (a) Merged reflectivity data from 7 different radars (KFDR, KINX, KLZK, KSGF,
KSRX, KTLX and KVNX) on March 3, 2003. (b) Segments (clusters) at scale used for 30-minute
motion estimation. (c) Motion estimate from the algorithm (d) 30-minute forecast based on advec-
tion.
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Figure 11: (a) Vertical slice through azimuth shear computed from a volume of data from the
KLBB radar on May 3, 2003. (b) Azimuthal shear computed from a single elevation scan. (c) Ver-
tical slice through multi-radar merged azimuthal shear from KFDR, KAMA, KLBB and KFWS.
(d) 6km horizontal slice through multi-radar data.



Figure 12: A rotation track field created by merging the maximum observed shear over time from
single radars. The overlaid thin lines indicate the paths observed in a post-event damage survey.
Data from May 3, 1999 in the Oklahoma City area are shown.



Figure 13: Multi-radar Vertical Integrated Liquid (VIL) product created in WDSS-II at a high-
resolution spatial (approximately 1km x 1km) and temporal (60 second update) resolution from
the latest reflectivity data from four radars – KFDR, KAMA, KLBB and KFWS on May 3, 2003.
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Figure 14: Data from July 21, 2003, combining data from KCYS, KGLD, KFTG, KLNX and
KUEX. (a) Reflectivity mapped to the -10oC isotherm level. (b) Maximum expected size of hail
(c) Probability of severe hail (d) Two-hour hail accumulation


