Multi-Dimensional Longwave Forcing of PBL Stratocumulus in an LES model

David B. Mechem1, Mikhail Ovtchinnikov2, Yefim L. Kogan1, Anthony B. Davis3, Robert F. Cahalan4, Ezra E. Takara5, and Robert G. Ellingson5

1Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, Norman, Oklahoma
2Pacific Northwest National Laboratory, Richland, Washington
3Los Alamos National Laboratory, Los Alamos, New Mexico
4NASA/Goddard Space Flight Center, Greenbelt, Maryland
5Florida State University, Tallahassee, Florida
Background and Motivation

- PBL clouds profoundly influence the global shortwave radiation budget through their effect on albedo.
- The source of turbulent energy for the PBL clouds themselves is long-wave cooling.
- Current large eddy simulation (LES) codes use 1D radiative transfer.
- Assumes PBL clouds are horizontally uniform.
• Real PBL clouds show horizontal structure: billows and valleys that arise from convective overturning of the boundary layer.

• Guan et al. (1995) show that horizontal photon transport reduces net cloud top cooling.

• The I3RC project has demonstrated that the plane-parallel assumption is frequently unwarranted.

Goal: In order to explore the evolutionary nature of this radiative-dynamic interaction, we have coupled to an LES the sophisticated multi-dimensional radiative transfer scheme of Evans (1998; Spherical Harmonics Discrete Ordinate Method — SHDOM).
Methodology

• CIMMS LES and SHDOM coupled in an interactive fashion.

• LES supplies cloud field to SHDOM, which calculates optical properties and computes RT in 12 bands from 4-100 μm.

• Includes emission, absorption, and scattering.

• **Case 1:** lightly drizzling, unbroken stratocumulus.

• **Case 2:** heavily drizzling, cloud breakup.

• For each case, perform MDRT and IPA runs.

• SHDOM calculates droplet radius based on a concentration of 50 cm\(^{-3}\) and assumes a U. S. Standard Atmosphere profile.

• 2D simulations, 500×51 and 100×51.
Lightly drizzling scenario (case 1)
Lightly drizzling scenario (case 1)

Liquid water and F_x at $t=3$ h (case 1, cloud top)
Lightly drizzling scenario (case 1)
and LWC (intervals of 0.1 g m$^{-3}$) at 3 h
Vertical velocity, LW forcing anomaly, and cloud top
Vertical profile of covariance

\[w' \left(\frac{dT}{dt}_{3D} - \frac{dT}{dt}_{IPA} \right) \]
Lightly drizzling scenario (case 1)

Z_i

LWP

$q_l \text{ max}$

Surface drizzle rate

Buoyancy flux

TKE
Heavily drizzling case (case 2)

Liquid water and F_x at $t=3$ h (case 2)

Height (km)

Distance (km)

q_i (g kg$^{-1}$)
Conclusions

• We have attempted to identify the existence of an evolutionary bias arising from the use of a 1D radiative forcing of simulated PBL cloud.

• For lightly drizzling, unbroken cloud, the differences between MDRT and 1D are subtle but seem systematic.

• Evolutionary differences appear to be driven by a combination of the reduced mean cloud-top LW forcing and the negative local correlations between the dynamics and the LW forcing anomaly.

• The differences are more pronounced for case 2, though they are nearly as large as estimated error.

• These subtle sensitivities to longwave forcing could conceivably lead to pronounced shortwave consequences.

• Many issues remain to be explored to enhance confidence in the quantitative aspect of these results, e.g. vertical model resolution, time between RT calculations, angular resolution of the RT calculation.